推荐系统的可扩展逼近SVD算法

Xun Zhou, Jing He, Guangyan Huang, Yanchun Zhang
{"title":"推荐系统的可扩展逼近SVD算法","authors":"Xun Zhou, Jing He, Guangyan Huang, Yanchun Zhang","doi":"10.3233/WIA-140303","DOIUrl":null,"url":null,"abstract":"With the rapid development of Internet, the amount of information on the Web grows explosively, people often feel puzzled and helpless in finding and getting the information they really need. For overcoming this problem, recommender systems such as singular value decomposition (SVD) method help users finding relevant information, products or services by providing personalized recommendations based on their profiles. SVD is a powerful technique for dimensionality reduction. However, due to its expensive computational requirements and weak performance for large sparse matrices, it has been considered inappropriate for practical applications involving massive data.Thus, to extract information in which the user is interested from a massive amount of data, we propose a personalized recommendation algorithm which is called ApproSVD algorithm based on approximating SVD in this paper. The trick behind our algorithm is to sample some rows of a user-item matrix, rescale each row by an appropriate factor to form a relatively smaller matrix, and then reduce the dimensionality of the smaller matrix. Finally, we present an empirical study to compare the prediction accuracy of our proposed algorithm with that of Drineas's LINEARTIMESVD algorithm and the standard SVD algorithm on MovieLens dataset and Flixster dataset, and show that our method has the best prediction quality. Furthermore, in order to show the superiority of the ApproSVD algorithm, we also conduct an empirical study to compare the prediction accuracy and running time between ApproSVD algorithm and incremental SVD algorithm on MovieLens dataset and Flixster dataset, and demonstrate that our proposed method has better performance overall.","PeriodicalId":263450,"journal":{"name":"Web Intell. Agent Syst.","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Scalable approximating SVD algorithm for recommender systems\",\"authors\":\"Xun Zhou, Jing He, Guangyan Huang, Yanchun Zhang\",\"doi\":\"10.3233/WIA-140303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of Internet, the amount of information on the Web grows explosively, people often feel puzzled and helpless in finding and getting the information they really need. For overcoming this problem, recommender systems such as singular value decomposition (SVD) method help users finding relevant information, products or services by providing personalized recommendations based on their profiles. SVD is a powerful technique for dimensionality reduction. However, due to its expensive computational requirements and weak performance for large sparse matrices, it has been considered inappropriate for practical applications involving massive data.Thus, to extract information in which the user is interested from a massive amount of data, we propose a personalized recommendation algorithm which is called ApproSVD algorithm based on approximating SVD in this paper. The trick behind our algorithm is to sample some rows of a user-item matrix, rescale each row by an appropriate factor to form a relatively smaller matrix, and then reduce the dimensionality of the smaller matrix. Finally, we present an empirical study to compare the prediction accuracy of our proposed algorithm with that of Drineas's LINEARTIMESVD algorithm and the standard SVD algorithm on MovieLens dataset and Flixster dataset, and show that our method has the best prediction quality. Furthermore, in order to show the superiority of the ApproSVD algorithm, we also conduct an empirical study to compare the prediction accuracy and running time between ApproSVD algorithm and incremental SVD algorithm on MovieLens dataset and Flixster dataset, and demonstrate that our proposed method has better performance overall.\",\"PeriodicalId\":263450,\"journal\":{\"name\":\"Web Intell. Agent Syst.\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web Intell. Agent Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/WIA-140303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intell. Agent Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/WIA-140303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

随着互联网的快速发展,网络上的信息量呈爆炸式增长,人们常常在寻找和获取自己真正需要的信息时感到困惑和无助。为了克服这一问题,奇异值分解(SVD)方法等推荐系统根据用户的个人资料提供个性化的推荐,帮助用户找到相关的信息、产品或服务。SVD是一种强大的降维技术。然而,由于其计算量大且对大型稀疏矩阵的性能较差,因此被认为不适合涉及海量数据的实际应用。因此,为了从海量数据中提取用户感兴趣的信息,本文提出了一种基于近似SVD的个性化推荐算法——ApproSVD算法。我们的算法背后的技巧是采样用户项矩阵的一些行,通过适当的因子重新缩放每一行以形成一个相对较小的矩阵,然后降低较小矩阵的维数。最后,在MovieLens数据集和Flixster数据集上,将本文算法与Drineas的LINEARTIMESVD算法和标准SVD算法的预测精度进行了实证研究,结果表明本文方法具有最佳的预测质量。此外,为了展示ApproSVD算法的优越性,我们还在MovieLens数据集和Flixster数据集上对ApproSVD算法和增量SVD算法的预测精度和运行时间进行了实证研究,并证明了我们提出的方法总体上具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable approximating SVD algorithm for recommender systems
With the rapid development of Internet, the amount of information on the Web grows explosively, people often feel puzzled and helpless in finding and getting the information they really need. For overcoming this problem, recommender systems such as singular value decomposition (SVD) method help users finding relevant information, products or services by providing personalized recommendations based on their profiles. SVD is a powerful technique for dimensionality reduction. However, due to its expensive computational requirements and weak performance for large sparse matrices, it has been considered inappropriate for practical applications involving massive data.Thus, to extract information in which the user is interested from a massive amount of data, we propose a personalized recommendation algorithm which is called ApproSVD algorithm based on approximating SVD in this paper. The trick behind our algorithm is to sample some rows of a user-item matrix, rescale each row by an appropriate factor to form a relatively smaller matrix, and then reduce the dimensionality of the smaller matrix. Finally, we present an empirical study to compare the prediction accuracy of our proposed algorithm with that of Drineas's LINEARTIMESVD algorithm and the standard SVD algorithm on MovieLens dataset and Flixster dataset, and show that our method has the best prediction quality. Furthermore, in order to show the superiority of the ApproSVD algorithm, we also conduct an empirical study to compare the prediction accuracy and running time between ApproSVD algorithm and incremental SVD algorithm on MovieLens dataset and Flixster dataset, and demonstrate that our proposed method has better performance overall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信