一种改进的充血性心力衰竭检测方法——自动分类器

L. Gladence, T. Ravi, M. Karthi
{"title":"一种改进的充血性心力衰竭检测方法——自动分类器","authors":"L. Gladence, T. Ravi, M. Karthi","doi":"10.1109/ICACCCT.2014.7019154","DOIUrl":null,"url":null,"abstract":"A number of studies demonstrated the relationship of HRV (Heart Rate Variability) measures. Over the past years, automatic classifier, based on several clinical & instrumental parameters have been proposed to support CHF assessment. Considering only the low level features will not fulfill the classification needs. In order to avoid the gap between low level i.e general causes for CHF & high level features i.e attribute retrieved from long term HRV & make a decision correctly proposed a classifier to individuate severity of CHF. The proposed classifier separates lower risk patients from higher risk ones, using standard long-term heart rate variability (HRV) measures. The method we used to develop the Automatic Classifier is Bayesian belief network Classifier. The Bayesian Belief Network Classifier has been used in several applications especially for medical diagnosis. The Bayesian Belief Network algorithm iteratively splits the dataset, according to a criterion that maximizes the separation of the data which will produce a tree-like decision.","PeriodicalId":239918,"journal":{"name":"2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"An enhanced method for detecting congestive heart failure - Automatic Classifier\",\"authors\":\"L. Gladence, T. Ravi, M. Karthi\",\"doi\":\"10.1109/ICACCCT.2014.7019154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of studies demonstrated the relationship of HRV (Heart Rate Variability) measures. Over the past years, automatic classifier, based on several clinical & instrumental parameters have been proposed to support CHF assessment. Considering only the low level features will not fulfill the classification needs. In order to avoid the gap between low level i.e general causes for CHF & high level features i.e attribute retrieved from long term HRV & make a decision correctly proposed a classifier to individuate severity of CHF. The proposed classifier separates lower risk patients from higher risk ones, using standard long-term heart rate variability (HRV) measures. The method we used to develop the Automatic Classifier is Bayesian belief network Classifier. The Bayesian Belief Network Classifier has been used in several applications especially for medical diagnosis. The Bayesian Belief Network algorithm iteratively splits the dataset, according to a criterion that maximizes the separation of the data which will produce a tree-like decision.\",\"PeriodicalId\":239918,\"journal\":{\"name\":\"2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACCCT.2014.7019154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCCT.2014.7019154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

许多研究证明了HRV(心率变异性)测量之间的关系。在过去的几年中,基于几个临床和仪器参数的自动分类器已被提出用于支持CHF评估。只考虑低级特征是不能满足分类需要的。为了避免低级特征(即CHF的一般原因)与高级特征(即从长期HRV中检索到的属性)之间的差距,并正确地做出决策,提出了一种分类器来区分CHF的严重程度。该分类器使用标准的长期心率变异性(HRV)指标将低风险患者与高风险患者区分开来。我们开发自动分类器的方法是贝叶斯信念网络分类器。贝叶斯信念网络分类器在医学诊断方面得到了广泛的应用。贝叶斯信念网络算法迭代分割数据集,根据一个标准,最大限度地分离数据,将产生一个树状决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An enhanced method for detecting congestive heart failure - Automatic Classifier
A number of studies demonstrated the relationship of HRV (Heart Rate Variability) measures. Over the past years, automatic classifier, based on several clinical & instrumental parameters have been proposed to support CHF assessment. Considering only the low level features will not fulfill the classification needs. In order to avoid the gap between low level i.e general causes for CHF & high level features i.e attribute retrieved from long term HRV & make a decision correctly proposed a classifier to individuate severity of CHF. The proposed classifier separates lower risk patients from higher risk ones, using standard long-term heart rate variability (HRV) measures. The method we used to develop the Automatic Classifier is Bayesian belief network Classifier. The Bayesian Belief Network Classifier has been used in several applications especially for medical diagnosis. The Bayesian Belief Network algorithm iteratively splits the dataset, according to a criterion that maximizes the separation of the data which will produce a tree-like decision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信