平面机器人关节障碍边界方程

Q. Ge, J. McCarthy
{"title":"平面机器人关节障碍边界方程","authors":"Q. Ge, J. McCarthy","doi":"10.1109/ROBOT.1989.99984","DOIUrl":null,"url":null,"abstract":"Parameterized equations for the boundaries of joint space obstacles for planar robots are derived. The boundary of a joint obstacle prescribes the link motion of the closed chain formed by the robot in contact with a given obstacle. The theory of kinematic mappings is used to represent the link motion as a set of points in a projective three space. The link positions that are feasible to the arm define a manifold in this space, termed its reachable manifold. The link positions satisfying contact conditions define another manifold in the same space called the contact manifold. Their intersection is mapped to joint space to obtain equations defining the obstacle boundary. While the theory applies to general planar robots, the authors focus on the 3R robot arm. An example is also provided in which the boundaries of joint obstacles are computed.<<ETX>>","PeriodicalId":114394,"journal":{"name":"Proceedings, 1989 International Conference on Robotics and Automation","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Equations for boundaries of joint obstacles for planar robots\",\"authors\":\"Q. Ge, J. McCarthy\",\"doi\":\"10.1109/ROBOT.1989.99984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parameterized equations for the boundaries of joint space obstacles for planar robots are derived. The boundary of a joint obstacle prescribes the link motion of the closed chain formed by the robot in contact with a given obstacle. The theory of kinematic mappings is used to represent the link motion as a set of points in a projective three space. The link positions that are feasible to the arm define a manifold in this space, termed its reachable manifold. The link positions satisfying contact conditions define another manifold in the same space called the contact manifold. Their intersection is mapped to joint space to obtain equations defining the obstacle boundary. While the theory applies to general planar robots, the authors focus on the 3R robot arm. An example is also provided in which the boundaries of joint obstacles are computed.<<ETX>>\",\"PeriodicalId\":114394,\"journal\":{\"name\":\"Proceedings, 1989 International Conference on Robotics and Automation\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings, 1989 International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1989.99984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings, 1989 International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1989.99984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

推导了平面机器人关节空间障碍物边界的参数化方程。关节障碍物的边界规定了机器人与给定障碍物接触时所形成的闭合链的连杆运动。利用运动学映射理论将连杆运动表示为射影三维空间中的一组点。臂上可行的连杆位置在这个空间中定义一个流形,称为可达流形。满足接触条件的连杆位置在同一空间中定义另一个流形,称为接触流形。将它们的交点映射到关节空间,得到定义障碍物边界的方程。虽然该理论适用于一般平面机器人,但作者关注的是3R机器人手臂。最后给出了计算关节障碍物边界的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equations for boundaries of joint obstacles for planar robots
Parameterized equations for the boundaries of joint space obstacles for planar robots are derived. The boundary of a joint obstacle prescribes the link motion of the closed chain formed by the robot in contact with a given obstacle. The theory of kinematic mappings is used to represent the link motion as a set of points in a projective three space. The link positions that are feasible to the arm define a manifold in this space, termed its reachable manifold. The link positions satisfying contact conditions define another manifold in the same space called the contact manifold. Their intersection is mapped to joint space to obtain equations defining the obstacle boundary. While the theory applies to general planar robots, the authors focus on the 3R robot arm. An example is also provided in which the boundaries of joint obstacles are computed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信