稀疏角孔径雷达的贪心算法

R. Raj, V. Chen, R. Lipps
{"title":"稀疏角孔径雷达的贪心算法","authors":"R. Raj, V. Chen, R. Lipps","doi":"10.1109/RADAR.2010.5494538","DOIUrl":null,"url":null,"abstract":"We present a novel algorithm for radar imaging of point scatterers using a sparse number of spatially separated sensors. Such sparse sensing scenarios are prototypical of many applications wherein a limited number of sensors are distributed over a geographical area; or where environmental and/or systemic constraints enforce a sparse sampling of angular aperture. Our underlying assumption is that the image is sparse with respect to the Gabor basis set. We then introduce the concept of an orbit-viz. the locus of all projections made by a spatial basis-and formulate the radar imaging problem as that of sparsifying the number of orbits that comprise the radon measurements of the source. We demonstrate how our algorithm outperforms FFT-based and Compressive-sensing based reconstruction algorithms for point-scatterer images, describe relevant theoretical performance bounds of our algorithm, and point to future research arising from this work.","PeriodicalId":125591,"journal":{"name":"2010 IEEE Radar Conference","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A greedy approach for sparse angular aperture radar\",\"authors\":\"R. Raj, V. Chen, R. Lipps\",\"doi\":\"10.1109/RADAR.2010.5494538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel algorithm for radar imaging of point scatterers using a sparse number of spatially separated sensors. Such sparse sensing scenarios are prototypical of many applications wherein a limited number of sensors are distributed over a geographical area; or where environmental and/or systemic constraints enforce a sparse sampling of angular aperture. Our underlying assumption is that the image is sparse with respect to the Gabor basis set. We then introduce the concept of an orbit-viz. the locus of all projections made by a spatial basis-and formulate the radar imaging problem as that of sparsifying the number of orbits that comprise the radon measurements of the source. We demonstrate how our algorithm outperforms FFT-based and Compressive-sensing based reconstruction algorithms for point-scatterer images, describe relevant theoretical performance bounds of our algorithm, and point to future research arising from this work.\",\"PeriodicalId\":125591,\"journal\":{\"name\":\"2010 IEEE Radar Conference\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2010.5494538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2010.5494538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种利用稀疏数量空间分离传感器对点散射体进行雷达成像的新算法。这种稀疏传感场景是许多应用的原型,其中有限数量的传感器分布在一个地理区域上;或者环境和/或系统约束强制对角孔径进行稀疏采样。我们的基本假设是图像相对于Gabor基集是稀疏的。然后我们引入轨道维兹的概念。由空间基做出的所有投影的轨迹——并将雷达成像问题表述为包含源的氡测量的轨道数量的稀疏化问题。我们展示了我们的算法如何优于基于fft和基于压缩感知的点散射图像重建算法,描述了我们算法的相关理论性能界限,并指出了这项工作中产生的未来研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A greedy approach for sparse angular aperture radar
We present a novel algorithm for radar imaging of point scatterers using a sparse number of spatially separated sensors. Such sparse sensing scenarios are prototypical of many applications wherein a limited number of sensors are distributed over a geographical area; or where environmental and/or systemic constraints enforce a sparse sampling of angular aperture. Our underlying assumption is that the image is sparse with respect to the Gabor basis set. We then introduce the concept of an orbit-viz. the locus of all projections made by a spatial basis-and formulate the radar imaging problem as that of sparsifying the number of orbits that comprise the radon measurements of the source. We demonstrate how our algorithm outperforms FFT-based and Compressive-sensing based reconstruction algorithms for point-scatterer images, describe relevant theoretical performance bounds of our algorithm, and point to future research arising from this work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信