关于2次4次的列代数

W. A. Zangre, André Conseibo
{"title":"关于2次4次的列代数","authors":"W. A. Zangre, André Conseibo","doi":"10.56947/gjom.v13i1.926","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with a class of nonassociative algebras called train algebras of degree 2 and exponent 4; Thus we give some results on algebras verifying a train identity of degree 2 and exponent 4. The structure of this class of algebras is studied through Peirce decomposition relative to a non zero idempotent. We give the necessary and sufficient conditions for an algebra verifying a train identity of degree 2 and exponent 4 to be Bernstein or train algebra of rank less than or equal to 3. Finally, we give some necessary conditions that must be verified by a train algebra of degree 2 and exponent 4, mainly in dimension four.","PeriodicalId":421614,"journal":{"name":"Gulf Journal of Mathematics","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On train algebras of degree 2 and exponent 4\",\"authors\":\"W. A. Zangre, André Conseibo\",\"doi\":\"10.56947/gjom.v13i1.926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we deal with a class of nonassociative algebras called train algebras of degree 2 and exponent 4; Thus we give some results on algebras verifying a train identity of degree 2 and exponent 4. The structure of this class of algebras is studied through Peirce decomposition relative to a non zero idempotent. We give the necessary and sufficient conditions for an algebra verifying a train identity of degree 2 and exponent 4 to be Bernstein or train algebra of rank less than or equal to 3. Finally, we give some necessary conditions that must be verified by a train algebra of degree 2 and exponent 4, mainly in dimension four.\",\"PeriodicalId\":421614,\"journal\":{\"name\":\"Gulf Journal of Mathematics\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gulf Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56947/gjom.v13i1.926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gulf Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56947/gjom.v13i1.926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们讨论了一类称为2次4次训练代数的非结合代数;在此基础上,我们给出了一些代数上的结果,证明了一个2次4次的列恒等式。通过对非零幂等代数的Peirce分解,研究了这类代数的结构。给出了证明2次4次列恒等式的代数是Bernstein或秩小于等于3的列代数的充分必要条件。最后,我们给出了一些必须用2次4次列代数(主要是在4维)来验证的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On train algebras of degree 2 and exponent 4
In this paper, we deal with a class of nonassociative algebras called train algebras of degree 2 and exponent 4; Thus we give some results on algebras verifying a train identity of degree 2 and exponent 4. The structure of this class of algebras is studied through Peirce decomposition relative to a non zero idempotent. We give the necessary and sufficient conditions for an algebra verifying a train identity of degree 2 and exponent 4 to be Bernstein or train algebra of rank less than or equal to 3. Finally, we give some necessary conditions that must be verified by a train algebra of degree 2 and exponent 4, mainly in dimension four.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信