{"title":"关于2次4次的列代数","authors":"W. A. Zangre, André Conseibo","doi":"10.56947/gjom.v13i1.926","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with a class of nonassociative algebras called train algebras of degree 2 and exponent 4; Thus we give some results on algebras verifying a train identity of degree 2 and exponent 4. The structure of this class of algebras is studied through Peirce decomposition relative to a non zero idempotent. We give the necessary and sufficient conditions for an algebra verifying a train identity of degree 2 and exponent 4 to be Bernstein or train algebra of rank less than or equal to 3. Finally, we give some necessary conditions that must be verified by a train algebra of degree 2 and exponent 4, mainly in dimension four.","PeriodicalId":421614,"journal":{"name":"Gulf Journal of Mathematics","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On train algebras of degree 2 and exponent 4\",\"authors\":\"W. A. Zangre, André Conseibo\",\"doi\":\"10.56947/gjom.v13i1.926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we deal with a class of nonassociative algebras called train algebras of degree 2 and exponent 4; Thus we give some results on algebras verifying a train identity of degree 2 and exponent 4. The structure of this class of algebras is studied through Peirce decomposition relative to a non zero idempotent. We give the necessary and sufficient conditions for an algebra verifying a train identity of degree 2 and exponent 4 to be Bernstein or train algebra of rank less than or equal to 3. Finally, we give some necessary conditions that must be verified by a train algebra of degree 2 and exponent 4, mainly in dimension four.\",\"PeriodicalId\":421614,\"journal\":{\"name\":\"Gulf Journal of Mathematics\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gulf Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56947/gjom.v13i1.926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gulf Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56947/gjom.v13i1.926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we deal with a class of nonassociative algebras called train algebras of degree 2 and exponent 4; Thus we give some results on algebras verifying a train identity of degree 2 and exponent 4. The structure of this class of algebras is studied through Peirce decomposition relative to a non zero idempotent. We give the necessary and sufficient conditions for an algebra verifying a train identity of degree 2 and exponent 4 to be Bernstein or train algebra of rank less than or equal to 3. Finally, we give some necessary conditions that must be verified by a train algebra of degree 2 and exponent 4, mainly in dimension four.