{"title":"忆阻器件的微/纳米实用制造实现","authors":"T. Prodromakis, K. Michelakis, C. Toumazou","doi":"10.1109/CNNA.2010.5430323","DOIUrl":null,"url":null,"abstract":"The recent discovery of the memristor has marked a new era for the advancement of neuromorphic applications and particularly the development of neurally-inspired processing architectures in silicon. An adults brain is a highly complex system and is estimated to contain from 1014 to 5×1014 synapses. On the other hand, the memristor is a delicate device requiring robust and reproducible fabrication methods. This paper assesses practical ways with which memristive devices can be fabricated, providing an experimental platform for studying systems with inherent neuromorphic responses.","PeriodicalId":336891,"journal":{"name":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Practical micro/nano fabrication implementations of memristive devices\",\"authors\":\"T. Prodromakis, K. Michelakis, C. Toumazou\",\"doi\":\"10.1109/CNNA.2010.5430323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent discovery of the memristor has marked a new era for the advancement of neuromorphic applications and particularly the development of neurally-inspired processing architectures in silicon. An adults brain is a highly complex system and is estimated to contain from 1014 to 5×1014 synapses. On the other hand, the memristor is a delicate device requiring robust and reproducible fabrication methods. This paper assesses practical ways with which memristive devices can be fabricated, providing an experimental platform for studying systems with inherent neuromorphic responses.\",\"PeriodicalId\":336891,\"journal\":{\"name\":\"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.2010.5430323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.2010.5430323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Practical micro/nano fabrication implementations of memristive devices
The recent discovery of the memristor has marked a new era for the advancement of neuromorphic applications and particularly the development of neurally-inspired processing architectures in silicon. An adults brain is a highly complex system and is estimated to contain from 1014 to 5×1014 synapses. On the other hand, the memristor is a delicate device requiring robust and reproducible fabrication methods. This paper assesses practical ways with which memristive devices can be fabricated, providing an experimental platform for studying systems with inherent neuromorphic responses.