安排促销工具以提高利润

Lennart Baardman, Maxime C. Cohen, Kiran Panchamgam, G. Perakis, D. Segev
{"title":"安排促销工具以提高利润","authors":"Lennart Baardman, Maxime C. Cohen, Kiran Panchamgam, G. Perakis, D. Segev","doi":"10.2139/ssrn.2638396","DOIUrl":null,"url":null,"abstract":"We model the problem of scheduling promotion vehicles to maximize profits as a non-linear bipartite matching-type problem, where promotion vehicles should be assigned to time periods, subject to capacity constraints. Our model is motivated and calibrated using actual data in collaboration with Oracle Retail. We introduce and study a class of models for which the boost effects of promotion vehicles on demand are multiplicative. We show that the general setting of the promotion vehicle scheduling problem is computationally intractable. Nevertheless, we develop approximation algorithms and propose a compact integer programming formulation. In particular, we show how to obtain a (1-e) - approximation using an integer program of polynomial size and derive an efficient polynomial time algorithm under a mild assumption on one of the input parameters. In addition, we investigate analytically and computationally the performance of a greedy procedure. Then, we discuss an interesting extension that includes cross-term effects to capture the cannibalization aspect of using several vehicles simultaneously. Finally, we validate and test our methods on actual data and quantify the impact of our models.","PeriodicalId":145189,"journal":{"name":"Robert H. Smith School of Business Research Paper Series","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Scheduling Promotion Vehicles to Boost Profits\",\"authors\":\"Lennart Baardman, Maxime C. Cohen, Kiran Panchamgam, G. Perakis, D. Segev\",\"doi\":\"10.2139/ssrn.2638396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We model the problem of scheduling promotion vehicles to maximize profits as a non-linear bipartite matching-type problem, where promotion vehicles should be assigned to time periods, subject to capacity constraints. Our model is motivated and calibrated using actual data in collaboration with Oracle Retail. We introduce and study a class of models for which the boost effects of promotion vehicles on demand are multiplicative. We show that the general setting of the promotion vehicle scheduling problem is computationally intractable. Nevertheless, we develop approximation algorithms and propose a compact integer programming formulation. In particular, we show how to obtain a (1-e) - approximation using an integer program of polynomial size and derive an efficient polynomial time algorithm under a mild assumption on one of the input parameters. In addition, we investigate analytically and computationally the performance of a greedy procedure. Then, we discuss an interesting extension that includes cross-term effects to capture the cannibalization aspect of using several vehicles simultaneously. Finally, we validate and test our methods on actual data and quantify the impact of our models.\",\"PeriodicalId\":145189,\"journal\":{\"name\":\"Robert H. Smith School of Business Research Paper Series\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robert H. Smith School of Business Research Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2638396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robert H. Smith School of Business Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2638396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

我们将调度促销车辆以最大化利润的问题建模为非线性二部匹配型问题,其中促销车辆应被分配到时间段,并受到容量限制。我们的模型是使用与Oracle Retail合作的实际数据来激励和校准的。我们引入并研究了一类促销车辆对需求的促进效应是乘法的模型。我们证明了推广车辆调度问题的一般设置在计算上是难以处理的。然而,我们发展了近似算法,并提出了一个紧凑的整数规划公式。特别是,我们展示了如何使用多项式大小的整数程序获得(1-e) -近似,并在对其中一个输入参数的温和假设下推导出有效的多项式时间算法。此外,我们还研究了贪婪过程的解析性和计算性。然后,我们讨论了一个有趣的扩展,其中包括跨期效应,以捕获同时使用几辆车的同类相食方面。最后,我们在实际数据上验证和测试我们的方法,并量化我们模型的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scheduling Promotion Vehicles to Boost Profits
We model the problem of scheduling promotion vehicles to maximize profits as a non-linear bipartite matching-type problem, where promotion vehicles should be assigned to time periods, subject to capacity constraints. Our model is motivated and calibrated using actual data in collaboration with Oracle Retail. We introduce and study a class of models for which the boost effects of promotion vehicles on demand are multiplicative. We show that the general setting of the promotion vehicle scheduling problem is computationally intractable. Nevertheless, we develop approximation algorithms and propose a compact integer programming formulation. In particular, we show how to obtain a (1-e) - approximation using an integer program of polynomial size and derive an efficient polynomial time algorithm under a mild assumption on one of the input parameters. In addition, we investigate analytically and computationally the performance of a greedy procedure. Then, we discuss an interesting extension that includes cross-term effects to capture the cannibalization aspect of using several vehicles simultaneously. Finally, we validate and test our methods on actual data and quantify the impact of our models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信