{"title":"基于微面的BRDF发生器","authors":"M. Ashikhmin, Simon Premoze, P. Shirley","doi":"10.1145/344779.344814","DOIUrl":null,"url":null,"abstract":"A method is presented that takes as an input a 2D microfacet orientation distribution and produces a 4D bidirectional reflectance distribution function (BRDF). This method differs from previous microfacet-based BRDF models in that it uses a simple shadowing term which allows it to handle very general microfacet distributions while maintaining reciprocity and energy conservation. The generator is shown on a variety of material types.","PeriodicalId":269415,"journal":{"name":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"347","resultStr":"{\"title\":\"A microfacet-based BRDF generator\",\"authors\":\"M. Ashikhmin, Simon Premoze, P. Shirley\",\"doi\":\"10.1145/344779.344814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method is presented that takes as an input a 2D microfacet orientation distribution and produces a 4D bidirectional reflectance distribution function (BRDF). This method differs from previous microfacet-based BRDF models in that it uses a simple shadowing term which allows it to handle very general microfacet distributions while maintaining reciprocity and energy conservation. The generator is shown on a variety of material types.\",\"PeriodicalId\":269415,\"journal\":{\"name\":\"Proceedings of the 27th annual conference on Computer graphics and interactive techniques\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"347\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th annual conference on Computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/344779.344814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/344779.344814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A method is presented that takes as an input a 2D microfacet orientation distribution and produces a 4D bidirectional reflectance distribution function (BRDF). This method differs from previous microfacet-based BRDF models in that it uses a simple shadowing term which allows it to handle very general microfacet distributions while maintaining reciprocity and energy conservation. The generator is shown on a variety of material types.