关节低剂量CT去噪与肾脏分割

M. Eslami, Solale Tabarestani, M. Adjouadi
{"title":"关节低剂量CT去噪与肾脏分割","authors":"M. Eslami, Solale Tabarestani, M. Adjouadi","doi":"10.1109/ISBIWorkshops50223.2020.9153392","DOIUrl":null,"url":null,"abstract":"In this research, both image denoising and kidney segmentation tasks are addressed jointly via one multitask deep convolutional network. This multitasking scheme yields better results for both tasks compared to separate single-task methods. Also, to the best of our knowledge, this is a first time attempt at addressing these joint tasks in low-dose CT scans (LDCT). This new network is a conditional generative adversarial network (C-GAN) and is an extension of the image-to-image translation network. To investigate the generalized nature of the network, two other conventional single task networks are also exploited, including the well-known 2D UNet method for segmentation and the more recently proposed method WGAN for LDCT denoising. Implementation results proved that the proposed method outperforms UNet and WGAN for both tasks.","PeriodicalId":329356,"journal":{"name":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Joint Low Dose CT Denoising And Kidney Segmentation\",\"authors\":\"M. Eslami, Solale Tabarestani, M. Adjouadi\",\"doi\":\"10.1109/ISBIWorkshops50223.2020.9153392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, both image denoising and kidney segmentation tasks are addressed jointly via one multitask deep convolutional network. This multitasking scheme yields better results for both tasks compared to separate single-task methods. Also, to the best of our knowledge, this is a first time attempt at addressing these joint tasks in low-dose CT scans (LDCT). This new network is a conditional generative adversarial network (C-GAN) and is an extension of the image-to-image translation network. To investigate the generalized nature of the network, two other conventional single task networks are also exploited, including the well-known 2D UNet method for segmentation and the more recently proposed method WGAN for LDCT denoising. Implementation results proved that the proposed method outperforms UNet and WGAN for both tasks.\",\"PeriodicalId\":329356,\"journal\":{\"name\":\"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 17th International Symposium on Biomedical Imaging Workshops (ISBI Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBIWorkshops50223.2020.9153392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本研究中,图像去噪和肾分割任务通过一个多任务深度卷积网络共同解决。与单独的单任务方法相比,这种多任务方案对两个任务都产生更好的结果。此外,据我们所知,这是第一次尝试在低剂量CT扫描(LDCT)中解决这些联合任务。这种新的网络是一种条件生成对抗网络(C-GAN),是图像到图像翻译网络的扩展。为了研究网络的泛化性质,还利用了另外两种传统的单任务网络,包括著名的2D UNet分割方法和最近提出的用于LDCT去噪的WGAN方法。实现结果表明,该方法在这两个任务上都优于UNet和WGAN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Low Dose CT Denoising And Kidney Segmentation
In this research, both image denoising and kidney segmentation tasks are addressed jointly via one multitask deep convolutional network. This multitasking scheme yields better results for both tasks compared to separate single-task methods. Also, to the best of our knowledge, this is a first time attempt at addressing these joint tasks in low-dose CT scans (LDCT). This new network is a conditional generative adversarial network (C-GAN) and is an extension of the image-to-image translation network. To investigate the generalized nature of the network, two other conventional single task networks are also exploited, including the well-known 2D UNet method for segmentation and the more recently proposed method WGAN for LDCT denoising. Implementation results proved that the proposed method outperforms UNet and WGAN for both tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信