特征步:步态识别的巨大飞跃

Patrick A. H. Bours, R. Shrestha
{"title":"特征步:步态识别的巨大飞跃","authors":"Patrick A. H. Bours, R. Shrestha","doi":"10.1109/IWSCN.2010.5497991","DOIUrl":null,"url":null,"abstract":"In this paper we will show that using Principle Component Analysis (PCA) on accelerometer based gait data will give a large improvement on the performance. On a dataset of 720 gait samples (60 volunteers and 12 gait samples per volunteer) we achieved an EER of 1.6% while the best result so far, using the Average Cycle Method (ACM), gave a result of nearly 6%. This tremendous increase makes gait recognition a viable method in commercial applications in the near future.","PeriodicalId":217163,"journal":{"name":"2010 2nd International Workshop on Security and Communication Networks (IWSCN)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Eigensteps: A giant leap for gait recognition\",\"authors\":\"Patrick A. H. Bours, R. Shrestha\",\"doi\":\"10.1109/IWSCN.2010.5497991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we will show that using Principle Component Analysis (PCA) on accelerometer based gait data will give a large improvement on the performance. On a dataset of 720 gait samples (60 volunteers and 12 gait samples per volunteer) we achieved an EER of 1.6% while the best result so far, using the Average Cycle Method (ACM), gave a result of nearly 6%. This tremendous increase makes gait recognition a viable method in commercial applications in the near future.\",\"PeriodicalId\":217163,\"journal\":{\"name\":\"2010 2nd International Workshop on Security and Communication Networks (IWSCN)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Security and Communication Networks (IWSCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSCN.2010.5497991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Security and Communication Networks (IWSCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSCN.2010.5497991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

在本文中,我们将证明在基于加速度计的步态数据上使用主成分分析(PCA)将大大提高性能。在720个步态样本的数据集(60名志愿者和每个志愿者12个步态样本)上,我们实现了1.6%的EER,而迄今为止使用平均周期方法(ACM)的最佳结果给出了接近6%的结果。这种巨大的增长使步态识别在不久的将来成为商业应用的可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eigensteps: A giant leap for gait recognition
In this paper we will show that using Principle Component Analysis (PCA) on accelerometer based gait data will give a large improvement on the performance. On a dataset of 720 gait samples (60 volunteers and 12 gait samples per volunteer) we achieved an EER of 1.6% while the best result so far, using the Average Cycle Method (ACM), gave a result of nearly 6%. This tremendous increase makes gait recognition a viable method in commercial applications in the near future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信