网联车辆智能变道决策方法

Zheyu Cui, Jianming Hu
{"title":"网联车辆智能变道决策方法","authors":"Zheyu Cui, Jianming Hu","doi":"10.1145/3487075.3487175","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of driving scenarios redundancy in the lane change decision-making, this paper proposes a deep reinforcement learning method (DRL) for lane change decision based on embedded attention mechanism (CADQN). The algorithm introduces the Convolutional Attention Mechanism Module (CBAM) into the DQN network to optimize the scenarios in time and space dimensions, and assist connected vehicles in making lane changing decisions. The algorithm is verified by the traffic simulation platform under the highway environment, and the results show that CADQN is helpful to improve the global traffic efficiency, and with the increase of traffic flow density, the benefit is more significant. Moreover, the visualization results of the attention layer in the CADQN can guide the optimization of the driving scenario.","PeriodicalId":354966,"journal":{"name":"Proceedings of the 5th International Conference on Computer Science and Application Engineering","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Intelligent Lane Changing Decision Method for Connected Vehicles\",\"authors\":\"Zheyu Cui, Jianming Hu\",\"doi\":\"10.1145/3487075.3487175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problem of driving scenarios redundancy in the lane change decision-making, this paper proposes a deep reinforcement learning method (DRL) for lane change decision based on embedded attention mechanism (CADQN). The algorithm introduces the Convolutional Attention Mechanism Module (CBAM) into the DQN network to optimize the scenarios in time and space dimensions, and assist connected vehicles in making lane changing decisions. The algorithm is verified by the traffic simulation platform under the highway environment, and the results show that CADQN is helpful to improve the global traffic efficiency, and with the increase of traffic flow density, the benefit is more significant. Moreover, the visualization results of the attention layer in the CADQN can guide the optimization of the driving scenario.\",\"PeriodicalId\":354966,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Computer Science and Application Engineering\",\"volume\":\"172 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Computer Science and Application Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3487075.3487175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Computer Science and Application Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487075.3487175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对变道决策中存在的驾驶场景冗余问题,提出了一种基于嵌入式注意机制(CADQN)的变道决策深度强化学习方法。该算法将卷积注意机制模块(Convolutional Attention Mechanism Module, CBAM)引入DQN网络,从时间和空间维度对场景进行优化,辅助联网车辆进行变道决策。通过高速公路环境下的交通仿真平台对该算法进行了验证,结果表明,CADQN有助于提高全局交通效率,且随着交通流密度的增加,效益更加显著。此外,CADQN中注意层的可视化结果可以指导驾驶场景的优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Intelligent Lane Changing Decision Method for Connected Vehicles
Aiming at the problem of driving scenarios redundancy in the lane change decision-making, this paper proposes a deep reinforcement learning method (DRL) for lane change decision based on embedded attention mechanism (CADQN). The algorithm introduces the Convolutional Attention Mechanism Module (CBAM) into the DQN network to optimize the scenarios in time and space dimensions, and assist connected vehicles in making lane changing decisions. The algorithm is verified by the traffic simulation platform under the highway environment, and the results show that CADQN is helpful to improve the global traffic efficiency, and with the increase of traffic flow density, the benefit is more significant. Moreover, the visualization results of the attention layer in the CADQN can guide the optimization of the driving scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信