动态贝叶斯网络框架中使用发音手势的鲁棒语音识别

V. Mitra, Hosung Nam, C. Espy-Wilson
{"title":"动态贝叶斯网络框架中使用发音手势的鲁棒语音识别","authors":"V. Mitra, Hosung Nam, C. Espy-Wilson","doi":"10.1109/ASRU.2011.6163918","DOIUrl":null,"url":null,"abstract":"Articulatory Phonology models speech as spatio-temporal constellation of constricting events (e.g. raising tongue tip, narrowing lips etc.), known as articulatory gestures. These gestures are associated with distinct organs (lips, tongue tip, tongue body, velum and glottis) along the vocal tract. In this paper we present a Dynamic Bayesian Network based speech recognition architecture that models the articulatory gestures as hidden variables and uses them for speech recognition. Using the proposed architecture we performed: (a) word recognition experiments on the noisy data of Aurora-2 and (b) phone recognition experiments on the University of Wisconsin X-ray microbeam database. Our results indicate that the use of gestural information helps to improve the performance of the recognition system compared to the system using acoustic information only.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Robust speech recognition using articulatory gestures in a Dynamic Bayesian Network framework\",\"authors\":\"V. Mitra, Hosung Nam, C. Espy-Wilson\",\"doi\":\"10.1109/ASRU.2011.6163918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Articulatory Phonology models speech as spatio-temporal constellation of constricting events (e.g. raising tongue tip, narrowing lips etc.), known as articulatory gestures. These gestures are associated with distinct organs (lips, tongue tip, tongue body, velum and glottis) along the vocal tract. In this paper we present a Dynamic Bayesian Network based speech recognition architecture that models the articulatory gestures as hidden variables and uses them for speech recognition. Using the proposed architecture we performed: (a) word recognition experiments on the noisy data of Aurora-2 and (b) phone recognition experiments on the University of Wisconsin X-ray microbeam database. Our results indicate that the use of gestural information helps to improve the performance of the recognition system compared to the system using acoustic information only.\",\"PeriodicalId\":338241,\"journal\":{\"name\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2011.6163918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

发音音韵学将语音建模为收缩事件(如抬起舌尖,收缩嘴唇等)的时空组合,称为发音手势。这些手势与声道上不同的器官(嘴唇、舌尖、舌体、膜和声门)有关。在本文中,我们提出了一种基于动态贝叶斯网络的语音识别体系结构,该体系结构将发音手势建模为隐藏变量,并将其用于语音识别。利用所提出的架构,我们进行了:(a)在Aurora-2的噪声数据上进行的单词识别实验和(b)在威斯康星大学x射线微束数据库上进行的手机识别实验。我们的研究结果表明,与仅使用声学信息的系统相比,使用手势信息有助于提高识别系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust speech recognition using articulatory gestures in a Dynamic Bayesian Network framework
Articulatory Phonology models speech as spatio-temporal constellation of constricting events (e.g. raising tongue tip, narrowing lips etc.), known as articulatory gestures. These gestures are associated with distinct organs (lips, tongue tip, tongue body, velum and glottis) along the vocal tract. In this paper we present a Dynamic Bayesian Network based speech recognition architecture that models the articulatory gestures as hidden variables and uses them for speech recognition. Using the proposed architecture we performed: (a) word recognition experiments on the noisy data of Aurora-2 and (b) phone recognition experiments on the University of Wisconsin X-ray microbeam database. Our results indicate that the use of gestural information helps to improve the performance of the recognition system compared to the system using acoustic information only.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信