一种设计神经网络的映射方法

K. Rohani, M.-S. Chen, M. Manry
{"title":"一种设计神经网络的映射方法","authors":"K. Rohani, M.-S. Chen, M. Manry","doi":"10.1109/NNSP.1991.239534","DOIUrl":null,"url":null,"abstract":"Several investigators have constructed back-propagation (BP) neural networks by assembling smaller, pre-trained building blocks. This approach leads to faster training and provides a known topology for the network. The authors carry this process down one additional level, by describing methods for mapping given functions to sub-blocks. First, polynomial approximations to the desired function are found. Then the polynomial is mapped to a BP network, using an extension of a constructive proof to universal approximation. Examples are given to illustrate the method.<<ETX>>","PeriodicalId":354832,"journal":{"name":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mapping approach for designing neural sub-nets\",\"authors\":\"K. Rohani, M.-S. Chen, M. Manry\",\"doi\":\"10.1109/NNSP.1991.239534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several investigators have constructed back-propagation (BP) neural networks by assembling smaller, pre-trained building blocks. This approach leads to faster training and provides a known topology for the network. The authors carry this process down one additional level, by describing methods for mapping given functions to sub-blocks. First, polynomial approximations to the desired function are found. Then the polynomial is mapped to a BP network, using an extension of a constructive proof to universal approximation. Examples are given to illustrate the method.<<ETX>>\",\"PeriodicalId\":354832,\"journal\":{\"name\":\"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.1991.239534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1991.239534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一些研究人员通过组装更小的、预先训练好的构建块来构建反向传播(BP)神经网络。这种方法可以加快训练速度,并为网络提供已知的拓扑结构。作者通过描述将给定函数映射到子块的方法,将这一过程进一步推进。首先,找到所需函数的多项式近似。然后将构造性证明推广到全称逼近,将多项式映射到BP网络。给出了实例来说明该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A mapping approach for designing neural sub-nets
Several investigators have constructed back-propagation (BP) neural networks by assembling smaller, pre-trained building blocks. This approach leads to faster training and provides a known topology for the network. The authors carry this process down one additional level, by describing methods for mapping given functions to sub-blocks. First, polynomial approximations to the desired function are found. Then the polynomial is mapped to a BP network, using an extension of a constructive proof to universal approximation. Examples are given to illustrate the method.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信