基于相似性学习的最近邻分类

A. M. Qamar, Éric Gaussier, J. Chevallet, Joo-Hwee Lim
{"title":"基于相似性学习的最近邻分类","authors":"A. M. Qamar, Éric Gaussier, J. Chevallet, Joo-Hwee Lim","doi":"10.1109/ICDM.2008.81","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an algorithm for learning a general class of similarity measures for kNN classification. This class encompasses, among others, the standard cosine measure, as well as the Dice and Jaccard coefficients. The algorithm we propose is an extension of the voted perceptron algorithm and allows one to learn different types of similarity functions (either based on diagonal, symmetric or asymmetric similarity matrices). The results we obtained show that learning similarity measures yields significant improvements on several collections, for two prediction rules: the standard kNN rule, which was our primary goal, and a symmetric version of it.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"24 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Similarity Learning for Nearest Neighbor Classification\",\"authors\":\"A. M. Qamar, Éric Gaussier, J. Chevallet, Joo-Hwee Lim\",\"doi\":\"10.1109/ICDM.2008.81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an algorithm for learning a general class of similarity measures for kNN classification. This class encompasses, among others, the standard cosine measure, as well as the Dice and Jaccard coefficients. The algorithm we propose is an extension of the voted perceptron algorithm and allows one to learn different types of similarity functions (either based on diagonal, symmetric or asymmetric similarity matrices). The results we obtained show that learning similarity measures yields significant improvements on several collections, for two prediction rules: the standard kNN rule, which was our primary goal, and a symmetric version of it.\",\"PeriodicalId\":252958,\"journal\":{\"name\":\"2008 Eighth IEEE International Conference on Data Mining\",\"volume\":\"24 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Eighth IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2008.81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

在本文中,我们提出了一种用于学习kNN分类的一般类相似度量的算法。这个类包含了标准余弦测量,以及骰子和Jaccard系数。我们提出的算法是投票感知器算法的扩展,允许人们学习不同类型的相似函数(基于对角、对称或非对称相似矩阵)。我们获得的结果表明,对于两个预测规则:标准kNN规则(这是我们的主要目标)和它的对称版本,学习相似度量在几个集合上产生了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Similarity Learning for Nearest Neighbor Classification
In this paper, we propose an algorithm for learning a general class of similarity measures for kNN classification. This class encompasses, among others, the standard cosine measure, as well as the Dice and Jaccard coefficients. The algorithm we propose is an extension of the voted perceptron algorithm and allows one to learn different types of similarity functions (either based on diagonal, symmetric or asymmetric similarity matrices). The results we obtained show that learning similarity measures yields significant improvements on several collections, for two prediction rules: the standard kNN rule, which was our primary goal, and a symmetric version of it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信