基于观测的抓取脑机接口标定

Harshavardhan A. Agashe, J. Contreras-Vidal
{"title":"基于观测的抓取脑机接口标定","authors":"Harshavardhan A. Agashe, J. Contreras-Vidal","doi":"10.1109/NER.2013.6695856","DOIUrl":null,"url":null,"abstract":"Brain-machine interfaces (BMIs) are increasingly being used in rehabilitation research to improve the quality of life of clinical populations. Current BMI technology allows us to control, with a high level of accuracy, the positioning of robotic hands in space. We have shown previously that it is possible to decode the dexterous movements of fingers during grasping, from noninvasively recorded electroencephalographic (EEG) activity. Due to the absence of overt movement in clinical subjects with impaired hand function, however, it is not possible to construct decoder models directly by simultaneously recording brain activity and kinematics. The mirror neuron system is activated in a similar fashion during both overt movements and observing movements performed by other agents. Here, we investigate action-observation as a strategy to calibrate decoders for grasping in human subjects. Subjects observed while a robotic hand performed grasping movements, and decode models were calibrated using the EEG activity of the subjects and the kinematics of the robotic hand. Decoding accuracy was tested on unseen data, in an 8-fold cross validation scheme, as the correlation coefficient between the predicted and actual trajectories. High decoding accuracies were obtained (r = 0.70 ± 0.07), demonstrating the feasibility of using action-observation as a calibration technique for decoding grasping movements.","PeriodicalId":156952,"journal":{"name":"2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Observation-based calibration of brain-machine interfaces for grasping\",\"authors\":\"Harshavardhan A. Agashe, J. Contreras-Vidal\",\"doi\":\"10.1109/NER.2013.6695856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-machine interfaces (BMIs) are increasingly being used in rehabilitation research to improve the quality of life of clinical populations. Current BMI technology allows us to control, with a high level of accuracy, the positioning of robotic hands in space. We have shown previously that it is possible to decode the dexterous movements of fingers during grasping, from noninvasively recorded electroencephalographic (EEG) activity. Due to the absence of overt movement in clinical subjects with impaired hand function, however, it is not possible to construct decoder models directly by simultaneously recording brain activity and kinematics. The mirror neuron system is activated in a similar fashion during both overt movements and observing movements performed by other agents. Here, we investigate action-observation as a strategy to calibrate decoders for grasping in human subjects. Subjects observed while a robotic hand performed grasping movements, and decode models were calibrated using the EEG activity of the subjects and the kinematics of the robotic hand. Decoding accuracy was tested on unseen data, in an 8-fold cross validation scheme, as the correlation coefficient between the predicted and actual trajectories. High decoding accuracies were obtained (r = 0.70 ± 0.07), demonstrating the feasibility of using action-observation as a calibration technique for decoding grasping movements.\",\"PeriodicalId\":156952,\"journal\":{\"name\":\"2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"165 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2013.6695856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2013.6695856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

脑机接口(BMIs)越来越多地应用于康复研究,以提高临床人群的生活质量。目前的BMI技术使我们能够以很高的精度控制机器人手在空间中的定位。我们已经表明,它是有可能解码灵巧的手指运动在抓取,从无创记录的脑电图(EEG)活动。然而,由于手功能受损的临床受试者缺乏明显的运动,不可能通过同时记录大脑活动和运动学来直接构建解码模型。镜像神经元系统在显性运动和观察其他主体执行的运动时都以类似的方式被激活。在这里,我们研究了动作观察作为一种策略来校准人类受试者的抓取解码器。实验对象观察机械手抓取动作,利用被试的脑电图活动和机械手的运动学对解码模型进行校准。解码精度在未知数据上进行测试,在8倍交叉验证方案中,作为预测轨迹和实际轨迹之间的相关系数。获得了较高的解码精度(r = 0.70±0.07),证明了将动作观察作为解码抓取动作的校准技术的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Observation-based calibration of brain-machine interfaces for grasping
Brain-machine interfaces (BMIs) are increasingly being used in rehabilitation research to improve the quality of life of clinical populations. Current BMI technology allows us to control, with a high level of accuracy, the positioning of robotic hands in space. We have shown previously that it is possible to decode the dexterous movements of fingers during grasping, from noninvasively recorded electroencephalographic (EEG) activity. Due to the absence of overt movement in clinical subjects with impaired hand function, however, it is not possible to construct decoder models directly by simultaneously recording brain activity and kinematics. The mirror neuron system is activated in a similar fashion during both overt movements and observing movements performed by other agents. Here, we investigate action-observation as a strategy to calibrate decoders for grasping in human subjects. Subjects observed while a robotic hand performed grasping movements, and decode models were calibrated using the EEG activity of the subjects and the kinematics of the robotic hand. Decoding accuracy was tested on unseen data, in an 8-fold cross validation scheme, as the correlation coefficient between the predicted and actual trajectories. High decoding accuracies were obtained (r = 0.70 ± 0.07), demonstrating the feasibility of using action-observation as a calibration technique for decoding grasping movements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信