Dilip P. Vasudevan, George Michelogiannakis, D. Donofrio, J. Shalf
{"title":"天堂-后摩尔架构和加速器设计空间探索使用设备级仿真和实验","authors":"Dilip P. Vasudevan, George Michelogiannakis, D. Donofrio, J. Shalf","doi":"10.1109/ISPASS.2019.00022","DOIUrl":null,"url":null,"abstract":"An increasing number of technologies are being proposed to preserve digital computing performance scaling as lithographic scaling slows. These technologies include new devices, specialized architectures, memories, and 3D integration. Currently, no end-to-end tool flow is available to rapidly perform architectural-level evaluation using device-level models and for a variety of emerging technologies at once. We propose PARADISE: An open-source comprehensive methodology to evaluate emerging technologies with a vertical simulation flow from the individual device level all the way up to the architec-turallevel. To demonstrate its effectiveness, we use PARADISE to perform end-to-end simulation and analysis of heterogeneous architectures using CNFETs, TFETs, and NCFETs, along with multiple hardware designs. To demonstrate its accuracy, we show that PARADISE has only a 6% mean deviation for delay and 9% for power compared to previous studies using commercial synthesis tools.","PeriodicalId":137786,"journal":{"name":"2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","volume":"417 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PARADISE - Post-Moore Architecture and Accelerator Design Space Exploration Using Device Level Simulation and Experiments\",\"authors\":\"Dilip P. Vasudevan, George Michelogiannakis, D. Donofrio, J. Shalf\",\"doi\":\"10.1109/ISPASS.2019.00022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An increasing number of technologies are being proposed to preserve digital computing performance scaling as lithographic scaling slows. These technologies include new devices, specialized architectures, memories, and 3D integration. Currently, no end-to-end tool flow is available to rapidly perform architectural-level evaluation using device-level models and for a variety of emerging technologies at once. We propose PARADISE: An open-source comprehensive methodology to evaluate emerging technologies with a vertical simulation flow from the individual device level all the way up to the architec-turallevel. To demonstrate its effectiveness, we use PARADISE to perform end-to-end simulation and analysis of heterogeneous architectures using CNFETs, TFETs, and NCFETs, along with multiple hardware designs. To demonstrate its accuracy, we show that PARADISE has only a 6% mean deviation for delay and 9% for power compared to previous studies using commercial synthesis tools.\",\"PeriodicalId\":137786,\"journal\":{\"name\":\"2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)\",\"volume\":\"417 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPASS.2019.00022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2019.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PARADISE - Post-Moore Architecture and Accelerator Design Space Exploration Using Device Level Simulation and Experiments
An increasing number of technologies are being proposed to preserve digital computing performance scaling as lithographic scaling slows. These technologies include new devices, specialized architectures, memories, and 3D integration. Currently, no end-to-end tool flow is available to rapidly perform architectural-level evaluation using device-level models and for a variety of emerging technologies at once. We propose PARADISE: An open-source comprehensive methodology to evaluate emerging technologies with a vertical simulation flow from the individual device level all the way up to the architec-turallevel. To demonstrate its effectiveness, we use PARADISE to perform end-to-end simulation and analysis of heterogeneous architectures using CNFETs, TFETs, and NCFETs, along with multiple hardware designs. To demonstrate its accuracy, we show that PARADISE has only a 6% mean deviation for delay and 9% for power compared to previous studies using commercial synthesis tools.