基于多层神经网络的ATM网络监管功能

K. K. Fan, A. Jayasumana
{"title":"基于多层神经网络的ATM网络监管功能","authors":"K. K. Fan, A. Jayasumana","doi":"10.1109/LCN.1996.558137","DOIUrl":null,"url":null,"abstract":"Artificial neural networks provide an attractive alternative in performing the policing function at the user network interface (UNI) of an asynchronous transfer mode (ATM) network. In order to guarantee quality of service (QOS) for the established connections in ATM networks, one of the policing functions at the UNI is to ensure that all data streams entering the ATM network conform to the allocated bandwidth, or otherwise the cell loss priority (CLP) bit in the ATM cell header must be set to reflect the situation that the output of the UNI has exceeded the permissible bandwidth. Feed-forward neural networks with back-propagation learning algorithms are chosen to perform the policing function at the UNI. Numerical results are presented to illustrate that the neural network is capable of performing the policing function.","PeriodicalId":420811,"journal":{"name":"Proceedings of LCN - 21st Annual Conference on Local Computer Networks","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Policing function in ATM network using multi-layer neural network\",\"authors\":\"K. K. Fan, A. Jayasumana\",\"doi\":\"10.1109/LCN.1996.558137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial neural networks provide an attractive alternative in performing the policing function at the user network interface (UNI) of an asynchronous transfer mode (ATM) network. In order to guarantee quality of service (QOS) for the established connections in ATM networks, one of the policing functions at the UNI is to ensure that all data streams entering the ATM network conform to the allocated bandwidth, or otherwise the cell loss priority (CLP) bit in the ATM cell header must be set to reflect the situation that the output of the UNI has exceeded the permissible bandwidth. Feed-forward neural networks with back-propagation learning algorithms are chosen to perform the policing function at the UNI. Numerical results are presented to illustrate that the neural network is capable of performing the policing function.\",\"PeriodicalId\":420811,\"journal\":{\"name\":\"Proceedings of LCN - 21st Annual Conference on Local Computer Networks\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of LCN - 21st Annual Conference on Local Computer Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN.1996.558137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of LCN - 21st Annual Conference on Local Computer Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.1996.558137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人工神经网络在异步传输模式(ATM)网络的用户网络接口(UNI)执行监管功能方面提供了一个有吸引力的替代方案。为了保证ATM网络中已建立的连接的服务质量(QOS), UNI的监管功能之一是确保进入ATM网络的所有数据流符合分配的带宽,否则必须设置ATM单元报头中的单元丢失优先级(CLP)位,以反映UNI输出超过允许带宽的情况。选择具有反向传播学习算法的前馈神经网络来执行UNI的监管功能。数值结果表明,该神经网络具有良好的监控功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Policing function in ATM network using multi-layer neural network
Artificial neural networks provide an attractive alternative in performing the policing function at the user network interface (UNI) of an asynchronous transfer mode (ATM) network. In order to guarantee quality of service (QOS) for the established connections in ATM networks, one of the policing functions at the UNI is to ensure that all data streams entering the ATM network conform to the allocated bandwidth, or otherwise the cell loss priority (CLP) bit in the ATM cell header must be set to reflect the situation that the output of the UNI has exceeded the permissible bandwidth. Feed-forward neural networks with back-propagation learning algorithms are chosen to perform the policing function at the UNI. Numerical results are presented to illustrate that the neural network is capable of performing the policing function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信