多项式时间的噪声种群恢复

Anindya De, M. Saks, Sijian Tang
{"title":"多项式时间的噪声种群恢复","authors":"Anindya De, M. Saks, Sijian Tang","doi":"10.1109/FOCS.2016.77","DOIUrl":null,"url":null,"abstract":"In the noisy population recovery problem of Dvir et al. [6], the goal is to learn an unknown distribution f on binary strings of length n from noisy samples. A noisy sample with parameter μ ∈ [0,1] is generated by selecting a sample from f, and independently flipping each coordinate of the sample with probability (1-μ)/2. We assume an upper bound k on the size of the support of the distribution, and the goal is to estimate the probability of any string to within some given error ε. It is known that the algorithmic complexity and sample complexity of this problem are polynomially related to each other. We describe an algorithm that for each μ > 0, provides the desired estimate of the distribution in time bounded by a polynomial in k, n and 1/ε improving upon the previous best result of poly(klog log k, n, 1/ε) due to Lovett and Zhang [9]. Our proof combines ideas from [9] with a noise attenuated version of Möbius inversion. The latter crucially uses the robust local inverse construction of Moitra and Saks [11].","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Noisy Population Recovery in Polynomial Time\",\"authors\":\"Anindya De, M. Saks, Sijian Tang\",\"doi\":\"10.1109/FOCS.2016.77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the noisy population recovery problem of Dvir et al. [6], the goal is to learn an unknown distribution f on binary strings of length n from noisy samples. A noisy sample with parameter μ ∈ [0,1] is generated by selecting a sample from f, and independently flipping each coordinate of the sample with probability (1-μ)/2. We assume an upper bound k on the size of the support of the distribution, and the goal is to estimate the probability of any string to within some given error ε. It is known that the algorithmic complexity and sample complexity of this problem are polynomially related to each other. We describe an algorithm that for each μ > 0, provides the desired estimate of the distribution in time bounded by a polynomial in k, n and 1/ε improving upon the previous best result of poly(klog log k, n, 1/ε) due to Lovett and Zhang [9]. Our proof combines ideas from [9] with a noise attenuated version of Möbius inversion. The latter crucially uses the robust local inverse construction of Moitra and Saks [11].\",\"PeriodicalId\":414001,\"journal\":{\"name\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2016.77\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在Dvir等人[6]的有噪声种群恢复问题中,目标是从有噪声的样本中学习长度为n的二进制字符串上的未知分布。从f中选取一个样本,并以(1-μ)/2的概率独立翻转样本的每个坐标,生成参数μ∈[0,1]的噪声样本。我们假设支持分布的大小有一个上限k,目标是估计任何字符串在给定误差ε内的概率。已知该问题的算法复杂度和样本复杂度是多项式相关的。我们描述了一种算法,该算法在先前由Lovett和Zhang[9]得出的poly(klog log k, n, 1/ε)的最佳结果的基础上,对每个μ > 0提供了以k, n和1/ε的多项式为界的时间分布的期望估计。我们的证明结合了[9]的思想和Möbius反演的噪声衰减版本。后者关键地使用了Moitra和Saks的鲁棒局部逆构造[11]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noisy Population Recovery in Polynomial Time
In the noisy population recovery problem of Dvir et al. [6], the goal is to learn an unknown distribution f on binary strings of length n from noisy samples. A noisy sample with parameter μ ∈ [0,1] is generated by selecting a sample from f, and independently flipping each coordinate of the sample with probability (1-μ)/2. We assume an upper bound k on the size of the support of the distribution, and the goal is to estimate the probability of any string to within some given error ε. It is known that the algorithmic complexity and sample complexity of this problem are polynomially related to each other. We describe an algorithm that for each μ > 0, provides the desired estimate of the distribution in time bounded by a polynomial in k, n and 1/ε improving upon the previous best result of poly(klog log k, n, 1/ε) due to Lovett and Zhang [9]. Our proof combines ideas from [9] with a noise attenuated version of Möbius inversion. The latter crucially uses the robust local inverse construction of Moitra and Saks [11].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信