使用spark高效的天文查询处理

Mariem Brahem, Laurent Yeh, K. Zeitouni
{"title":"使用spark高效的天文查询处理","authors":"Mariem Brahem, Laurent Yeh, K. Zeitouni","doi":"10.1145/3274895.3274942","DOIUrl":null,"url":null,"abstract":"Sky surveys represent a fundamental data source in astronomy. Today, these surveys are moving into a petascale regime produced by modern telescopes. Due to the exponential growth of astronomical data, there is a pressing need to provide efficient astronomical query processing. Our goal is to bridge the gap between existing distributed systems and high-level languages for astronomers. In this paper, we present efficient techniques for query processing of astronomical data using ASTROIDE. Our framework helps astronomers to take advantage of the richness of the astronomical data. The proposed model supports complex astronomical operators expressed using ADQL (Astronomical Data Query Language), an extension of SQL commonly used by astronomers. ASTROIDE proposes spatial indexing and partitioning techniques to better filter the data access. It also implements a query optimizer that injects spatial-aware optimization rules and strategies. Experimental evaluation based on real datasets demonstrates that the present framework is scalable and efficient.","PeriodicalId":325775,"journal":{"name":"Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Efficient astronomical query processing using spark\",\"authors\":\"Mariem Brahem, Laurent Yeh, K. Zeitouni\",\"doi\":\"10.1145/3274895.3274942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sky surveys represent a fundamental data source in astronomy. Today, these surveys are moving into a petascale regime produced by modern telescopes. Due to the exponential growth of astronomical data, there is a pressing need to provide efficient astronomical query processing. Our goal is to bridge the gap between existing distributed systems and high-level languages for astronomers. In this paper, we present efficient techniques for query processing of astronomical data using ASTROIDE. Our framework helps astronomers to take advantage of the richness of the astronomical data. The proposed model supports complex astronomical operators expressed using ADQL (Astronomical Data Query Language), an extension of SQL commonly used by astronomers. ASTROIDE proposes spatial indexing and partitioning techniques to better filter the data access. It also implements a query optimizer that injects spatial-aware optimization rules and strategies. Experimental evaluation based on real datasets demonstrates that the present framework is scalable and efficient.\",\"PeriodicalId\":325775,\"journal\":{\"name\":\"Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3274895.3274942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3274895.3274942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

天空测量是天文学的一个基本数据来源。今天,这些调查正在进入由现代望远镜产生的千万亿次级范围。由于天文数据呈指数级增长,迫切需要提供高效的天文查询处理。我们的目标是为天文学家搭建现有分布式系统和高级语言之间的桥梁。本文提出了利用ASTROIDE对天文数据进行查询处理的有效技术。我们的框架帮助天文学家利用丰富的天文数据。该模型支持使用ADQL(天文数据查询语言)表达的复杂天文运算符,ADQL是天文学家常用的SQL的扩展。ASTROIDE提出了空间索引和分区技术,以更好地过滤数据访问。它还实现了一个查询优化器,该优化器注入了空间感知的优化规则和策略。基于实际数据集的实验评估表明,该框架具有可扩展性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient astronomical query processing using spark
Sky surveys represent a fundamental data source in astronomy. Today, these surveys are moving into a petascale regime produced by modern telescopes. Due to the exponential growth of astronomical data, there is a pressing need to provide efficient astronomical query processing. Our goal is to bridge the gap between existing distributed systems and high-level languages for astronomers. In this paper, we present efficient techniques for query processing of astronomical data using ASTROIDE. Our framework helps astronomers to take advantage of the richness of the astronomical data. The proposed model supports complex astronomical operators expressed using ADQL (Astronomical Data Query Language), an extension of SQL commonly used by astronomers. ASTROIDE proposes spatial indexing and partitioning techniques to better filter the data access. It also implements a query optimizer that injects spatial-aware optimization rules and strategies. Experimental evaluation based on real datasets demonstrates that the present framework is scalable and efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信