安全Naïve贝叶斯分类协议加密数据使用完全同态加密

Yoshiko Yasumura, Yu Ishimaki, H. Yamana
{"title":"安全Naïve贝叶斯分类协议加密数据使用完全同态加密","authors":"Yoshiko Yasumura, Yu Ishimaki, H. Yamana","doi":"10.1145/3366030.3366056","DOIUrl":null,"url":null,"abstract":"Machine learning classification has a wide range of applications. In the big data era, a client may want to outsource classification tasks to reduce the computational burden at the client. Meanwhile, an entity may want to provide a classification model and classification services to such clients. However, applications such as medical diagnosis require sensitive data that both parties may not want to reveal. Fully homomorphic encryption (FHE) enables secure computation over encrypted data without decryption. By applying FHE, classification can be outsourced to a cloud without revealing any data. However, existing studies on classification over FHE do not achieve the scenario of outsourcing classification to a cloud while preserving the privacy of the classification model, client's data and result. In this work, we apply FHE to a naïve Bayes classifier and, to the best of our knowledge, propose the first concrete secure classification protocol that satisfies the above scenario.","PeriodicalId":446280,"journal":{"name":"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Secure Naïve Bayes Classification Protocol over Encrypted Data Using Fully Homomorphic Encryption\",\"authors\":\"Yoshiko Yasumura, Yu Ishimaki, H. Yamana\",\"doi\":\"10.1145/3366030.3366056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning classification has a wide range of applications. In the big data era, a client may want to outsource classification tasks to reduce the computational burden at the client. Meanwhile, an entity may want to provide a classification model and classification services to such clients. However, applications such as medical diagnosis require sensitive data that both parties may not want to reveal. Fully homomorphic encryption (FHE) enables secure computation over encrypted data without decryption. By applying FHE, classification can be outsourced to a cloud without revealing any data. However, existing studies on classification over FHE do not achieve the scenario of outsourcing classification to a cloud while preserving the privacy of the classification model, client's data and result. In this work, we apply FHE to a naïve Bayes classifier and, to the best of our knowledge, propose the first concrete secure classification protocol that satisfies the above scenario.\",\"PeriodicalId\":446280,\"journal\":{\"name\":\"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3366030.3366056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st International Conference on Information Integration and Web-based Applications & Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366030.3366056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

机器学习分类有着广泛的应用。在大数据时代,客户可能希望将分类任务外包,以减少客户端的计算负担。同时,实体可能希望向这些客户端提供分类模型和分类服务。然而,诸如医疗诊断之类的应用程序需要双方都不愿透露的敏感数据。完全同态加密(FHE)可以在不解密的情况下对加密数据进行安全计算。通过应用FHE,分类可以外包给云,而不会泄露任何数据。然而,现有的基于FHE的分类研究并没有在保证分类模型、客户数据和结果的隐私性的前提下,实现将分类外包到云端的场景。在这项工作中,我们将FHE应用于naïve贝叶斯分类器,并据我们所知,提出了满足上述场景的第一个具体的安全分类协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secure Naïve Bayes Classification Protocol over Encrypted Data Using Fully Homomorphic Encryption
Machine learning classification has a wide range of applications. In the big data era, a client may want to outsource classification tasks to reduce the computational burden at the client. Meanwhile, an entity may want to provide a classification model and classification services to such clients. However, applications such as medical diagnosis require sensitive data that both parties may not want to reveal. Fully homomorphic encryption (FHE) enables secure computation over encrypted data without decryption. By applying FHE, classification can be outsourced to a cloud without revealing any data. However, existing studies on classification over FHE do not achieve the scenario of outsourcing classification to a cloud while preserving the privacy of the classification model, client's data and result. In this work, we apply FHE to a naïve Bayes classifier and, to the best of our knowledge, propose the first concrete secure classification protocol that satisfies the above scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信