主动运动发育中自然约束和内在动机的相互作用

Adrien Baranes, Pierre-Yves Oudeyer
{"title":"主动运动发育中自然约束和内在动机的相互作用","authors":"Adrien Baranes, Pierre-Yves Oudeyer","doi":"10.1109/DEVLRN.2011.6037315","DOIUrl":null,"url":null,"abstract":"This paper studies computational models of the coupling of intrinsic motivations and physiological maturational constraints, and argues that both mechanisms may have complex bidirectional interactions allowing the active control of the growth of complexity in motor development which directs an efficient learning and exploration process. First, we outline the Self-Adaptive Goal Generation - Robust Intelligent Adaptive Curiosity algorithm (SAGG-RIAC) that instantiates an intrinsically motivated goal exploration mechanism for motor learning of inverse models. Then, we introduce a functional model of maturational constraints inspired by the myelination process in humans, and show how it can be coupled with the SAGG-RIAC algorithm, forming a new system called McSAGG-RIAC2. We then present experiments to evaluate qualitative and, more importantly, quantitative properties of these systems when applied to a 12DOF quadruped controlled with 24 dimensions motor synergies.","PeriodicalId":256921,"journal":{"name":"2011 IEEE International Conference on Development and Learning (ICDL)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"The interaction of maturational constraints and intrinsic motivations in active motor development\",\"authors\":\"Adrien Baranes, Pierre-Yves Oudeyer\",\"doi\":\"10.1109/DEVLRN.2011.6037315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies computational models of the coupling of intrinsic motivations and physiological maturational constraints, and argues that both mechanisms may have complex bidirectional interactions allowing the active control of the growth of complexity in motor development which directs an efficient learning and exploration process. First, we outline the Self-Adaptive Goal Generation - Robust Intelligent Adaptive Curiosity algorithm (SAGG-RIAC) that instantiates an intrinsically motivated goal exploration mechanism for motor learning of inverse models. Then, we introduce a functional model of maturational constraints inspired by the myelination process in humans, and show how it can be coupled with the SAGG-RIAC algorithm, forming a new system called McSAGG-RIAC2. We then present experiments to evaluate qualitative and, more importantly, quantitative properties of these systems when applied to a 12DOF quadruped controlled with 24 dimensions motor synergies.\",\"PeriodicalId\":256921,\"journal\":{\"name\":\"2011 IEEE International Conference on Development and Learning (ICDL)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Development and Learning (ICDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEVLRN.2011.6037315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Development and Learning (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2011.6037315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

本文研究了内在动机和生理成熟约束耦合的计算模型,并认为这两种机制可能具有复杂的双向相互作用,从而主动控制运动发育过程中复杂性的增长,从而指导有效的学习和探索过程。首先,我们概述了自适应目标生成-鲁棒智能自适应好奇心算法(SAGG-RIAC),该算法实例化了逆模型运动学习的内在动机目标探索机制。然后,我们引入了一个受人类髓鞘形成过程启发的成熟约束功能模型,并展示了如何将其与SAGG-RIAC算法相结合,形成一个名为McSAGG-RIAC2的新系统。然后,我们提出了实验来评估定性的,更重要的是,这些系统的定量特性,当应用于24维运动协同控制的12DOF四足动物时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The interaction of maturational constraints and intrinsic motivations in active motor development
This paper studies computational models of the coupling of intrinsic motivations and physiological maturational constraints, and argues that both mechanisms may have complex bidirectional interactions allowing the active control of the growth of complexity in motor development which directs an efficient learning and exploration process. First, we outline the Self-Adaptive Goal Generation - Robust Intelligent Adaptive Curiosity algorithm (SAGG-RIAC) that instantiates an intrinsically motivated goal exploration mechanism for motor learning of inverse models. Then, we introduce a functional model of maturational constraints inspired by the myelination process in humans, and show how it can be coupled with the SAGG-RIAC algorithm, forming a new system called McSAGG-RIAC2. We then present experiments to evaluate qualitative and, more importantly, quantitative properties of these systems when applied to a 12DOF quadruped controlled with 24 dimensions motor synergies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信