基于新扰动的BP神经网络控制混沌系统

Xiaoping Zong, Jun Geng
{"title":"基于新扰动的BP神经网络控制混沌系统","authors":"Xiaoping Zong, Jun Geng","doi":"10.1109/ICWAPR.2009.5207408","DOIUrl":null,"url":null,"abstract":"A new perturbation model is proposed, and used to train BP neural network for chaotic systems in this paper. The method requires no previous knowledge about the system to be controlled, including the dimensionality of the system and location of unstable fixed points, can be extended to other chaos control. It was tested on the henon and Logistic maps, and the simulation results showed that it could make the chaos present periodic motion.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Control chaotic systems based on BP neural network with a new perturbation\",\"authors\":\"Xiaoping Zong, Jun Geng\",\"doi\":\"10.1109/ICWAPR.2009.5207408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new perturbation model is proposed, and used to train BP neural network for chaotic systems in this paper. The method requires no previous knowledge about the system to be controlled, including the dimensionality of the system and location of unstable fixed points, can be extended to other chaos control. It was tested on the henon and Logistic maps, and the simulation results showed that it could make the chaos present periodic motion.\",\"PeriodicalId\":424264,\"journal\":{\"name\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Wavelet Analysis and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2009.5207408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种新的扰动模型,并将其用于混沌系统的BP神经网络训练。该方法不需要预先了解待控制系统的相关知识,包括系统的维数和不稳定不动点的位置,可以推广到其他混沌控制中。在henon和Logistic映射上进行了实验,仿真结果表明该方法能使混沌呈现周期运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control chaotic systems based on BP neural network with a new perturbation
A new perturbation model is proposed, and used to train BP neural network for chaotic systems in this paper. The method requires no previous knowledge about the system to be controlled, including the dimensionality of the system and location of unstable fixed points, can be extended to other chaos control. It was tested on the henon and Logistic maps, and the simulation results showed that it could make the chaos present periodic motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信