{"title":"杂化铌酸锂电光调制器的设计与制造","authors":"V. Mere, Forrest Valdez, S. Mookherjea","doi":"10.1109/ICEE56203.2022.10117674","DOIUrl":null,"url":null,"abstract":"A process for designing and fabricating hybrid lithium niobate Mach-Zehnder electro-optic modulators is described. The design uses unetched thin-film lithium niobate bonded to a foundry-fabricated chip containing planarized silicon nitride waveguides. We demonstrate 3-dB electro-optic bandwidth greater than 110 GHz and $\\mathrm{V}\\pi \\mathrm{L}$ of 2.4 V.cm, at 1310 nm wavelength.","PeriodicalId":281727,"journal":{"name":"2022 IEEE International Conference on Emerging Electronics (ICEE)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Fabrication of Hybrid Lithium Niobate Electro-Optic Modulators\",\"authors\":\"V. Mere, Forrest Valdez, S. Mookherjea\",\"doi\":\"10.1109/ICEE56203.2022.10117674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A process for designing and fabricating hybrid lithium niobate Mach-Zehnder electro-optic modulators is described. The design uses unetched thin-film lithium niobate bonded to a foundry-fabricated chip containing planarized silicon nitride waveguides. We demonstrate 3-dB electro-optic bandwidth greater than 110 GHz and $\\\\mathrm{V}\\\\pi \\\\mathrm{L}$ of 2.4 V.cm, at 1310 nm wavelength.\",\"PeriodicalId\":281727,\"journal\":{\"name\":\"2022 IEEE International Conference on Emerging Electronics (ICEE)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Emerging Electronics (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEE56203.2022.10117674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEE56203.2022.10117674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Fabrication of Hybrid Lithium Niobate Electro-Optic Modulators
A process for designing and fabricating hybrid lithium niobate Mach-Zehnder electro-optic modulators is described. The design uses unetched thin-film lithium niobate bonded to a foundry-fabricated chip containing planarized silicon nitride waveguides. We demonstrate 3-dB electro-optic bandwidth greater than 110 GHz and $\mathrm{V}\pi \mathrm{L}$ of 2.4 V.cm, at 1310 nm wavelength.