数据流的序贯非参数k -媒质聚类

Sreeram C. Sreenivasan, S. Bhashyam
{"title":"数据流的序贯非参数k -媒质聚类","authors":"Sreeram C. Sreenivasan, S. Bhashyam","doi":"10.1109/NCC55593.2022.9806794","DOIUrl":null,"url":null,"abstract":"We study a sequential nonparametric clustering problem to group a finite set of S data streams into K clusters. The data streams are real-valued i.i.d data sequences generated from unknown continuous distributions. The distributions them-selves are organized into clusters according to their proximity to each other based on a certain distance metric. We propose a universal sequential nonparametric clustering test for the case when K is known. We show that the proposed test stops in finite time almost surely and is universally exponentially consistent. We also bound the asymptotic growth rate of the expected stopping time as probability of error goes to zero. Our results generalize earlier work on sequential nonparametric anomaly detection to the more general sequential nonparametric clustering problem, thereby providing a new test for case of anomaly detection where the anomalous data streams can follow distinct probability distributions. Simulations show that our proposed sequential clustering test outperforms the corresponding fixed sample size test.","PeriodicalId":403870,"journal":{"name":"2022 National Conference on Communications (NCC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sequential Nonparametric K-Medoid Clustering of Data Streams\",\"authors\":\"Sreeram C. Sreenivasan, S. Bhashyam\",\"doi\":\"10.1109/NCC55593.2022.9806794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a sequential nonparametric clustering problem to group a finite set of S data streams into K clusters. The data streams are real-valued i.i.d data sequences generated from unknown continuous distributions. The distributions them-selves are organized into clusters according to their proximity to each other based on a certain distance metric. We propose a universal sequential nonparametric clustering test for the case when K is known. We show that the proposed test stops in finite time almost surely and is universally exponentially consistent. We also bound the asymptotic growth rate of the expected stopping time as probability of error goes to zero. Our results generalize earlier work on sequential nonparametric anomaly detection to the more general sequential nonparametric clustering problem, thereby providing a new test for case of anomaly detection where the anomalous data streams can follow distinct probability distributions. Simulations show that our proposed sequential clustering test outperforms the corresponding fixed sample size test.\",\"PeriodicalId\":403870,\"journal\":{\"name\":\"2022 National Conference on Communications (NCC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC55593.2022.9806794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC55593.2022.9806794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了一个序列非参数聚类问题,将有限的S个数据流聚到K个聚类中。数据流是由未知连续分布生成的实值i.i.d数据序列。基于一定的距离度量,分布本身根据彼此的接近度被组织成簇。对于K已知的情况,我们提出了一个通用顺序非参数聚类检验。我们证明了所提出的测试几乎肯定地在有限时间内停止,并且是普遍指数一致的。当误差概率趋于零时,我们也对期望停止时间的渐近增长率进行了约束。我们的研究结果将先前关于顺序非参数异常检测的工作推广到更一般的顺序非参数聚类问题,从而为异常数据流可以遵循不同概率分布的异常检测情况提供了一种新的测试方法。仿真结果表明,本文提出的顺序聚类测试优于相应的固定样本量测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequential Nonparametric K-Medoid Clustering of Data Streams
We study a sequential nonparametric clustering problem to group a finite set of S data streams into K clusters. The data streams are real-valued i.i.d data sequences generated from unknown continuous distributions. The distributions them-selves are organized into clusters according to their proximity to each other based on a certain distance metric. We propose a universal sequential nonparametric clustering test for the case when K is known. We show that the proposed test stops in finite time almost surely and is universally exponentially consistent. We also bound the asymptotic growth rate of the expected stopping time as probability of error goes to zero. Our results generalize earlier work on sequential nonparametric anomaly detection to the more general sequential nonparametric clustering problem, thereby providing a new test for case of anomaly detection where the anomalous data streams can follow distinct probability distributions. Simulations show that our proposed sequential clustering test outperforms the corresponding fixed sample size test.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信