P. Koulibaly, P. Charbonnier, L. Blanc-Féraud, I. Laurette, J. Darcourt, M. Barlaud
{"title":"发射层析成像重建的泊松统计和半二次正则化算法","authors":"P. Koulibaly, P. Charbonnier, L. Blanc-Féraud, I. Laurette, J. Darcourt, M. Barlaud","doi":"10.1109/ICIP.1996.560997","DOIUrl":null,"url":null,"abstract":"In emission computerized tomography, the use of realistic constraints such as edge-preserving smoothing lead to nonlinear regularisation. Charbonnier et al. (see IEEE Trans. on Image Processing, 1994) used the half-quadratic regularization in order to solve this problem. Applied together with a Gaussian likelihood, it formed the ARTUR algorithm. We propose a new regularized algorithm called MOISE which takes into account the Poisson nature of the statistical noise and uses this half-quadratic regularization. For that reason, MOISE differ from the MAP EM (maximum a posteriori expectation maximization) algorithm developed by P.J. Green (1990) which uses the one step late technique. We tested MOISE and compared it with ARTUR, on numerical simulation and real data. The results show that, despite the slowness of convergence, the half-quadratic regularization can be applied in the case of a Poisson statistic.","PeriodicalId":192947,"journal":{"name":"Proceedings of 3rd IEEE International Conference on Image Processing","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Poisson statistic and half-quadratic regularization for emission tomography reconstruction algorithm\",\"authors\":\"P. Koulibaly, P. Charbonnier, L. Blanc-Féraud, I. Laurette, J. Darcourt, M. Barlaud\",\"doi\":\"10.1109/ICIP.1996.560997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In emission computerized tomography, the use of realistic constraints such as edge-preserving smoothing lead to nonlinear regularisation. Charbonnier et al. (see IEEE Trans. on Image Processing, 1994) used the half-quadratic regularization in order to solve this problem. Applied together with a Gaussian likelihood, it formed the ARTUR algorithm. We propose a new regularized algorithm called MOISE which takes into account the Poisson nature of the statistical noise and uses this half-quadratic regularization. For that reason, MOISE differ from the MAP EM (maximum a posteriori expectation maximization) algorithm developed by P.J. Green (1990) which uses the one step late technique. We tested MOISE and compared it with ARTUR, on numerical simulation and real data. The results show that, despite the slowness of convergence, the half-quadratic regularization can be applied in the case of a Poisson statistic.\",\"PeriodicalId\":192947,\"journal\":{\"name\":\"Proceedings of 3rd IEEE International Conference on Image Processing\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 3rd IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.1996.560997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1996.560997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
摘要
在发射计算机断层扫描中,使用诸如边缘保持平滑等现实约束导致非线性正则化。Charbonnier et al.(参见IEEE Trans。在图像处理,1994)使用半二次正则化,以解决这个问题。与高斯似然算法一起应用,形成了ARTUR算法。我们提出了一种新的正则化算法,称为MOISE,它考虑了统计噪声的泊松性质,并使用了这种半二次正则化。因此,MOISE不同于P.J. Green(1990)开发的MAP EM(最大后验期望最大化)算法,该算法使用一步延迟技术。在数值模拟和实际数据上对MOISE进行了测试,并与ARTUR进行了比较。结果表明,尽管收敛速度较慢,但半二次正则化可以应用于泊松统计量的情况。
Poisson statistic and half-quadratic regularization for emission tomography reconstruction algorithm
In emission computerized tomography, the use of realistic constraints such as edge-preserving smoothing lead to nonlinear regularisation. Charbonnier et al. (see IEEE Trans. on Image Processing, 1994) used the half-quadratic regularization in order to solve this problem. Applied together with a Gaussian likelihood, it formed the ARTUR algorithm. We propose a new regularized algorithm called MOISE which takes into account the Poisson nature of the statistical noise and uses this half-quadratic regularization. For that reason, MOISE differ from the MAP EM (maximum a posteriori expectation maximization) algorithm developed by P.J. Green (1990) which uses the one step late technique. We tested MOISE and compared it with ARTUR, on numerical simulation and real data. The results show that, despite the slowness of convergence, the half-quadratic regularization can be applied in the case of a Poisson statistic.