监测变长度进化算法中的遗传变异

M. Defoin-Platel, M. Clergue
{"title":"监测变长度进化算法中的遗传变异","authors":"M. Defoin-Platel, M. Clergue","doi":"10.1109/HIS.2006.47","DOIUrl":null,"url":null,"abstract":"Initially, Artificial Evolution focuses on Evolutionary Algorithms handling solutions coded in fixed length structures. In this context, the role of crossover is clearly the mixing of information between solutions. The development of Evolutionary Algorithms operating on structures with variable length, of which genetic programming is one of the most representative instances, opens new questions on the effects of crossover. Beside mixing, two new effects are identified : the diffusion of information inside solutions and the variation of the solutions sizes. In this paper, we propose a experimental framework to study these three effects and apply it on three different crossovers for genetic programming : the Standard Crossover, the One-Point Crossover and the Maximum Homologous Crossover. Exceedingly different behaviors are reported leading us to consider the necessary future decoupling of the mixing, the diffusion and the size variation.","PeriodicalId":150732,"journal":{"name":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring Genetic Variations in Variable Length Evolutionary Algorithms\",\"authors\":\"M. Defoin-Platel, M. Clergue\",\"doi\":\"10.1109/HIS.2006.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Initially, Artificial Evolution focuses on Evolutionary Algorithms handling solutions coded in fixed length structures. In this context, the role of crossover is clearly the mixing of information between solutions. The development of Evolutionary Algorithms operating on structures with variable length, of which genetic programming is one of the most representative instances, opens new questions on the effects of crossover. Beside mixing, two new effects are identified : the diffusion of information inside solutions and the variation of the solutions sizes. In this paper, we propose a experimental framework to study these three effects and apply it on three different crossovers for genetic programming : the Standard Crossover, the One-Point Crossover and the Maximum Homologous Crossover. Exceedingly different behaviors are reported leading us to consider the necessary future decoupling of the mixing, the diffusion and the size variation.\",\"PeriodicalId\":150732,\"journal\":{\"name\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2006.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2006.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最初,人工进化专注于处理固定长度结构编码的解决方案的进化算法。在这种情况下,交叉的作用显然是解决方案之间信息的混合。以遗传规划为代表的变长结构进化算法的发展,对交叉效应提出了新的问题。除了混合外,还发现了两种新的效应:溶液内信息的扩散和溶液大小的变化。在本文中,我们提出了一个实验框架来研究这三种效应,并将其应用于三种不同的遗传规划交叉:标准交叉、单点交叉和最大同源交叉。由于报告了极为不同的行为,使我们考虑将来必要的混合、扩散和尺寸变化的解耦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring Genetic Variations in Variable Length Evolutionary Algorithms
Initially, Artificial Evolution focuses on Evolutionary Algorithms handling solutions coded in fixed length structures. In this context, the role of crossover is clearly the mixing of information between solutions. The development of Evolutionary Algorithms operating on structures with variable length, of which genetic programming is one of the most representative instances, opens new questions on the effects of crossover. Beside mixing, two new effects are identified : the diffusion of information inside solutions and the variation of the solutions sizes. In this paper, we propose a experimental framework to study these three effects and apply it on three different crossovers for genetic programming : the Standard Crossover, the One-Point Crossover and the Maximum Homologous Crossover. Exceedingly different behaviors are reported leading us to consider the necessary future decoupling of the mixing, the diffusion and the size variation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信