{"title":"在泰国海上的连续油管上,首次使用新设计的试验磨铣钻头,在小井眼井中进行了非常窄间隙的永久油管贴片磨铣","authors":"Monchai Nimsuk, Treepun Tipapong, Surapong Somjai, Thanawee Kreethapon, Nophadol Jiemsawat, Tuanangkoon Daohmareeyor, Arweephan Kangsadarn, Reawat Wattanasuwankorn, Prapas Phayakrangsee","doi":"10.2118/209881-ms","DOIUrl":null,"url":null,"abstract":"\n The permanent tubing patch is a primary method widely used to isolate water production zones, especially in slim-hole wells. As the name implies, the permanent tubing patch is non-retrievable equipment and presents a significant challenge when removal is needed. None of the global records of permanent tubing patches installed in slim-hole wells demonstrate successful removal. This paper will discuss the methods used to achieve the first-ever Coiled Tubing (CT) milling of a permanent tubing patch in a slim-hole well.\n CT was selected to convey the BHA for milling the tubing patch sealing section. An eccentric pilot milling bit (2.780 in OD) was carefully designed as it needed to pass an ID restriction (2.813 in) in the Downhole Safety Valve (DHSV) while still being able to peel off the tubing patch sealing ID (2.250 in) until reaching the full drift of tubing ID (2.992 in) and ensure that the tubing wall would not be damaged during the milling operation. Once the tubing patch sealing section was removed, a braided-line (WL) operation was run to pull free and retrieve the tubing patch body to surface. The well was then restored to enable further intervention and production.\n CT performed the milling operation flawlessly, and a carefully designed surface equipment stack-up design provided downhole tool deployment accessibility and convenience for both CT and WL intervention. Nitrified fluid was used with CT to mitigate loss problems in several depleted zones above the milling depth. As a result, the tubing patch seal was successfully milled without jeopardizing the tubing integrity. Once the tubing patch seal element was successfully removed and the patch body became free, the WL was deployed through the CT stack to fish the tubing patch body.\n This is the first-ever operation to remove and retrieve a permanent tubing patch to the surface in this way without damaging the primary completion. Its success results from a well-thought-out pilot mill bit design and careful execution. This case study can now be shared across the industry to improve intervention efficiency and minimize the chance of early plug and abandonment due to permanent tubing patch removal issues.","PeriodicalId":226577,"journal":{"name":"Day 2 Wed, August 10, 2022","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The First Application of Permanent Tubing Patch Milling With Very Narrow Clearance in a Slimhole well with a Newly Engineered Pilot Mill Bit Design for Coiled Tubing, Offshore Thailand\",\"authors\":\"Monchai Nimsuk, Treepun Tipapong, Surapong Somjai, Thanawee Kreethapon, Nophadol Jiemsawat, Tuanangkoon Daohmareeyor, Arweephan Kangsadarn, Reawat Wattanasuwankorn, Prapas Phayakrangsee\",\"doi\":\"10.2118/209881-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The permanent tubing patch is a primary method widely used to isolate water production zones, especially in slim-hole wells. As the name implies, the permanent tubing patch is non-retrievable equipment and presents a significant challenge when removal is needed. None of the global records of permanent tubing patches installed in slim-hole wells demonstrate successful removal. This paper will discuss the methods used to achieve the first-ever Coiled Tubing (CT) milling of a permanent tubing patch in a slim-hole well.\\n CT was selected to convey the BHA for milling the tubing patch sealing section. An eccentric pilot milling bit (2.780 in OD) was carefully designed as it needed to pass an ID restriction (2.813 in) in the Downhole Safety Valve (DHSV) while still being able to peel off the tubing patch sealing ID (2.250 in) until reaching the full drift of tubing ID (2.992 in) and ensure that the tubing wall would not be damaged during the milling operation. Once the tubing patch sealing section was removed, a braided-line (WL) operation was run to pull free and retrieve the tubing patch body to surface. The well was then restored to enable further intervention and production.\\n CT performed the milling operation flawlessly, and a carefully designed surface equipment stack-up design provided downhole tool deployment accessibility and convenience for both CT and WL intervention. Nitrified fluid was used with CT to mitigate loss problems in several depleted zones above the milling depth. As a result, the tubing patch seal was successfully milled without jeopardizing the tubing integrity. Once the tubing patch seal element was successfully removed and the patch body became free, the WL was deployed through the CT stack to fish the tubing patch body.\\n This is the first-ever operation to remove and retrieve a permanent tubing patch to the surface in this way without damaging the primary completion. Its success results from a well-thought-out pilot mill bit design and careful execution. This case study can now be shared across the industry to improve intervention efficiency and minimize the chance of early plug and abandonment due to permanent tubing patch removal issues.\",\"PeriodicalId\":226577,\"journal\":{\"name\":\"Day 2 Wed, August 10, 2022\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, August 10, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/209881-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, August 10, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/209881-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The First Application of Permanent Tubing Patch Milling With Very Narrow Clearance in a Slimhole well with a Newly Engineered Pilot Mill Bit Design for Coiled Tubing, Offshore Thailand
The permanent tubing patch is a primary method widely used to isolate water production zones, especially in slim-hole wells. As the name implies, the permanent tubing patch is non-retrievable equipment and presents a significant challenge when removal is needed. None of the global records of permanent tubing patches installed in slim-hole wells demonstrate successful removal. This paper will discuss the methods used to achieve the first-ever Coiled Tubing (CT) milling of a permanent tubing patch in a slim-hole well.
CT was selected to convey the BHA for milling the tubing patch sealing section. An eccentric pilot milling bit (2.780 in OD) was carefully designed as it needed to pass an ID restriction (2.813 in) in the Downhole Safety Valve (DHSV) while still being able to peel off the tubing patch sealing ID (2.250 in) until reaching the full drift of tubing ID (2.992 in) and ensure that the tubing wall would not be damaged during the milling operation. Once the tubing patch sealing section was removed, a braided-line (WL) operation was run to pull free and retrieve the tubing patch body to surface. The well was then restored to enable further intervention and production.
CT performed the milling operation flawlessly, and a carefully designed surface equipment stack-up design provided downhole tool deployment accessibility and convenience for both CT and WL intervention. Nitrified fluid was used with CT to mitigate loss problems in several depleted zones above the milling depth. As a result, the tubing patch seal was successfully milled without jeopardizing the tubing integrity. Once the tubing patch seal element was successfully removed and the patch body became free, the WL was deployed through the CT stack to fish the tubing patch body.
This is the first-ever operation to remove and retrieve a permanent tubing patch to the surface in this way without damaging the primary completion. Its success results from a well-thought-out pilot mill bit design and careful execution. This case study can now be shared across the industry to improve intervention efficiency and minimize the chance of early plug and abandonment due to permanent tubing patch removal issues.