延期

Ying-Chao Tung, Mayank Goel, Isaac Zinda, Jacob O. Wobbrock
{"title":"延期","authors":"Ying-Chao Tung, Mayank Goel, Isaac Zinda, Jacob O. Wobbrock","doi":"10.1145/3242969.3243028","DOIUrl":null,"url":null,"abstract":"Modern smartphones are built with capacitive-sensing touchscreens, which can detect anything that is conductive or has a dielectric differential with air. The human finger is an example of such a dielectric, and works wonderfully with such touchscreens. However, touch interactions are disrupted by raindrops, water smear, and wet fingers because capacitive touchscreens cannot distinguish finger touches from other conductive materials. When users' screens get wet, the screen's usability is significantly reduced. RainCheck addresses this hazard by filtering out potential touch points caused by water to differentiate fingertips from raindrops and water smear, adapting in real-time to restore successful interaction to the user. Specifically, RainCheck uses the low-level raw sensor data from touchscreen drivers and employs precise selection techniques to resolve water-fingertip ambiguity. Our study shows that RainCheck improves gesture accuracy by 75.7%, touch accuracy by 47.9%, and target selection time by 80.0%, making it a successful remedy to interference caused by rain and other water.","PeriodicalId":308751,"journal":{"name":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","volume":"403 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"RainCheck\",\"authors\":\"Ying-Chao Tung, Mayank Goel, Isaac Zinda, Jacob O. Wobbrock\",\"doi\":\"10.1145/3242969.3243028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern smartphones are built with capacitive-sensing touchscreens, which can detect anything that is conductive or has a dielectric differential with air. The human finger is an example of such a dielectric, and works wonderfully with such touchscreens. However, touch interactions are disrupted by raindrops, water smear, and wet fingers because capacitive touchscreens cannot distinguish finger touches from other conductive materials. When users' screens get wet, the screen's usability is significantly reduced. RainCheck addresses this hazard by filtering out potential touch points caused by water to differentiate fingertips from raindrops and water smear, adapting in real-time to restore successful interaction to the user. Specifically, RainCheck uses the low-level raw sensor data from touchscreen drivers and employs precise selection techniques to resolve water-fingertip ambiguity. Our study shows that RainCheck improves gesture accuracy by 75.7%, touch accuracy by 47.9%, and target selection time by 80.0%, making it a successful remedy to interference caused by rain and other water.\",\"PeriodicalId\":308751,\"journal\":{\"name\":\"Proceedings of the 20th ACM International Conference on Multimodal Interaction\",\"volume\":\"403 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th ACM International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3242969.3243028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3242969.3243028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
RainCheck
Modern smartphones are built with capacitive-sensing touchscreens, which can detect anything that is conductive or has a dielectric differential with air. The human finger is an example of such a dielectric, and works wonderfully with such touchscreens. However, touch interactions are disrupted by raindrops, water smear, and wet fingers because capacitive touchscreens cannot distinguish finger touches from other conductive materials. When users' screens get wet, the screen's usability is significantly reduced. RainCheck addresses this hazard by filtering out potential touch points caused by water to differentiate fingertips from raindrops and water smear, adapting in real-time to restore successful interaction to the user. Specifically, RainCheck uses the low-level raw sensor data from touchscreen drivers and employs precise selection techniques to resolve water-fingertip ambiguity. Our study shows that RainCheck improves gesture accuracy by 75.7%, touch accuracy by 47.9%, and target selection time by 80.0%, making it a successful remedy to interference caused by rain and other water.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信