耗散(2 + 1)维AKNS方程的李对称分析、特解和守恒定律

Sixing Tao
{"title":"耗散(2 + 1)维AKNS方程的李对称分析、特解和守恒定律","authors":"Sixing Tao","doi":"10.3934/cam.2023024","DOIUrl":null,"url":null,"abstract":"The dissipative (2 + 1)-dimensional AKNS equation is considered in this paper. First, the Lie symmetry analysis method is applied to the dissipative (2 + 1)-dimensional AKNS and six point symmetries are obtained. Symmetry reductions are performed by utilizing these obtained point symmetries and four differential equations are derived, including a fourth-order ordinary differential equation and three partial differential equations. Thereafter, the direct integration approach and the $ (G'/G^{2})- $expansion method are employed to solve the ordinary differential respectively. As a result, a periodic solution in terms of the Weierstrass elliptic function is obtained via the the direct integration approach, while six kinds of including the hyperbolic function types and the hyperbolic function types are derived via the $ (G'/G^{2})- $expansion method. The corresponding graphical representation of the obtained solutions are presented by choosing suitable parametric values. Finally, the multiplier technique and the classical Noether's theorem are employed to derive conserved vectors for the dissipative (2 + 1)-dimensional AKNS respectively. Consequently, eight local conservation laws for the dissipative (2 + 1)-dimensional AKNS equation are presented by utilizing the multiplier technique and five local conservation laws are derived by invoking Noether's theorem.","PeriodicalId":233941,"journal":{"name":"Communications in Analysis and Mechanics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lie symmetry analysis, particular solutions and conservation laws for the dissipative (2 + 1)- dimensional AKNS equation\",\"authors\":\"Sixing Tao\",\"doi\":\"10.3934/cam.2023024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dissipative (2 + 1)-dimensional AKNS equation is considered in this paper. First, the Lie symmetry analysis method is applied to the dissipative (2 + 1)-dimensional AKNS and six point symmetries are obtained. Symmetry reductions are performed by utilizing these obtained point symmetries and four differential equations are derived, including a fourth-order ordinary differential equation and three partial differential equations. Thereafter, the direct integration approach and the $ (G'/G^{2})- $expansion method are employed to solve the ordinary differential respectively. As a result, a periodic solution in terms of the Weierstrass elliptic function is obtained via the the direct integration approach, while six kinds of including the hyperbolic function types and the hyperbolic function types are derived via the $ (G'/G^{2})- $expansion method. The corresponding graphical representation of the obtained solutions are presented by choosing suitable parametric values. Finally, the multiplier technique and the classical Noether's theorem are employed to derive conserved vectors for the dissipative (2 + 1)-dimensional AKNS respectively. Consequently, eight local conservation laws for the dissipative (2 + 1)-dimensional AKNS equation are presented by utilizing the multiplier technique and five local conservation laws are derived by invoking Noether's theorem.\",\"PeriodicalId\":233941,\"journal\":{\"name\":\"Communications in Analysis and Mechanics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cam.2023024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cam.2023024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了耗散的(2 + 1)维AKNS方程。首先,将李对称性分析方法应用于耗散(2 + 1)维AKNS,得到6个点对称;利用所得到的点对称性进行对称约简,导出了四个微分方程,包括一个四阶常微分方程和三个偏微分方程。然后分别采用直接积分法和$ (G′/G^{2})- $展开法求解常微分。通过直接积分法得到了Weierstrass椭圆函数的周期解,并通过$ (G′/G^{2})- $展开法导出了双曲型函数和双曲型函数的六种周期解。通过选择合适的参数值,给出了得到的解的相应图形表示。最后,利用乘子技术和经典诺特定理分别推导了耗散(2 + 1)维AKNS的守恒向量。因此,利用乘子技术给出了耗散(2 + 1)维AKNS方程的8个局部守恒定律,并利用Noether定理导出了5个局部守恒定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lie symmetry analysis, particular solutions and conservation laws for the dissipative (2 + 1)- dimensional AKNS equation
The dissipative (2 + 1)-dimensional AKNS equation is considered in this paper. First, the Lie symmetry analysis method is applied to the dissipative (2 + 1)-dimensional AKNS and six point symmetries are obtained. Symmetry reductions are performed by utilizing these obtained point symmetries and four differential equations are derived, including a fourth-order ordinary differential equation and three partial differential equations. Thereafter, the direct integration approach and the $ (G'/G^{2})- $expansion method are employed to solve the ordinary differential respectively. As a result, a periodic solution in terms of the Weierstrass elliptic function is obtained via the the direct integration approach, while six kinds of including the hyperbolic function types and the hyperbolic function types are derived via the $ (G'/G^{2})- $expansion method. The corresponding graphical representation of the obtained solutions are presented by choosing suitable parametric values. Finally, the multiplier technique and the classical Noether's theorem are employed to derive conserved vectors for the dissipative (2 + 1)-dimensional AKNS respectively. Consequently, eight local conservation laws for the dissipative (2 + 1)-dimensional AKNS equation are presented by utilizing the multiplier technique and five local conservation laws are derived by invoking Noether's theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信