流处理系统的实时路线规划:以卢塞恩市为例

Asli Özal, A. Ranganathan, Nesime Tatbul
{"title":"流处理系统的实时路线规划:以卢塞恩市为例","authors":"Asli Özal, A. Ranganathan, Nesime Tatbul","doi":"10.1145/2064959.2064965","DOIUrl":null,"url":null,"abstract":"Traffic-aware real-time route planning has recently been an application of increasing interest for metropolitan cities with busy traffic. This paper approaches the problem from a stream processing point of view and proposes a general architecture to solve it. This work is inspired by a real use case and is implemented on an industry-strength stream processing engine. Experimental results on this implementation demonstrate the scalability of this approach in terms of increasing data and query rates.","PeriodicalId":190366,"journal":{"name":"International Workshop on GeoStreaming","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Real-time route planning with stream processing systems: a case study for the city of Lucerne\",\"authors\":\"Asli Özal, A. Ranganathan, Nesime Tatbul\",\"doi\":\"10.1145/2064959.2064965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic-aware real-time route planning has recently been an application of increasing interest for metropolitan cities with busy traffic. This paper approaches the problem from a stream processing point of view and proposes a general architecture to solve it. This work is inspired by a real use case and is implemented on an industry-strength stream processing engine. Experimental results on this implementation demonstrate the scalability of this approach in terms of increasing data and query rates.\",\"PeriodicalId\":190366,\"journal\":{\"name\":\"International Workshop on GeoStreaming\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on GeoStreaming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2064959.2064965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on GeoStreaming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2064959.2064965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

交通感知实时路线规划最近已成为交通繁忙的大都市日益关注的一项应用。本文从流处理的角度探讨了这一问题,并提出了解决这一问题的通用体系结构。这项工作的灵感来自于一个真实的用例,并在一个行业强度的流处理引擎上实现。该实现的实验结果证明了该方法在提高数据和查询率方面的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time route planning with stream processing systems: a case study for the city of Lucerne
Traffic-aware real-time route planning has recently been an application of increasing interest for metropolitan cities with busy traffic. This paper approaches the problem from a stream processing point of view and proposes a general architecture to solve it. This work is inspired by a real use case and is implemented on an industry-strength stream processing engine. Experimental results on this implementation demonstrate the scalability of this approach in terms of increasing data and query rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信