MSDC-Net:用于立体匹配的多尺度密集上下文网络

Zhibo Rao, Mingyi He, Yuchao Dai, Zhidong Zhu, Bo Li, Renjie He
{"title":"MSDC-Net:用于立体匹配的多尺度密集上下文网络","authors":"Zhibo Rao, Mingyi He, Yuchao Dai, Zhidong Zhu, Bo Li, Renjie He","doi":"10.1109/APSIPAASC47483.2019.9023237","DOIUrl":null,"url":null,"abstract":"Disparity prediction from stereo images is essential to computer vision applications such as autonomous driving, 3D model reconstruction, and object detection. To more accurately predict disparity map, a novel deep learning architecture (called MSDC-Net) for detecting the disparity map from a rectified pair of stereo images is proposed. Our MSDC-Net contains two modules: the multi-scale fusion 2D convolution module and the multi-scale residual 3D convolution module. The multi-scale fusion 2D convolution module exploits the potential multi-scale features, which extracts and fuses the different scale features by Dense-Net. The multi-scale residual 3D convolution module learns the different scale geometry context from the cost volume which aggregated by the multi-scale fusion 2D convolution module. Experimental results on Scene Flow and KITTI datasets demonstrate that our MSDC-Net significantly outperforms other approaches in the non-occluded region.","PeriodicalId":145222,"journal":{"name":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"MSDC-Net: Multi-Scale Dense and Contextual Networks for Stereo Matching\",\"authors\":\"Zhibo Rao, Mingyi He, Yuchao Dai, Zhidong Zhu, Bo Li, Renjie He\",\"doi\":\"10.1109/APSIPAASC47483.2019.9023237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Disparity prediction from stereo images is essential to computer vision applications such as autonomous driving, 3D model reconstruction, and object detection. To more accurately predict disparity map, a novel deep learning architecture (called MSDC-Net) for detecting the disparity map from a rectified pair of stereo images is proposed. Our MSDC-Net contains two modules: the multi-scale fusion 2D convolution module and the multi-scale residual 3D convolution module. The multi-scale fusion 2D convolution module exploits the potential multi-scale features, which extracts and fuses the different scale features by Dense-Net. The multi-scale residual 3D convolution module learns the different scale geometry context from the cost volume which aggregated by the multi-scale fusion 2D convolution module. Experimental results on Scene Flow and KITTI datasets demonstrate that our MSDC-Net significantly outperforms other approaches in the non-occluded region.\",\"PeriodicalId\":145222,\"journal\":{\"name\":\"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPAASC47483.2019.9023237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPAASC47483.2019.9023237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

从立体图像中预测视差对于自动驾驶、3D模型重建和目标检测等计算机视觉应用至关重要。为了更准确地预测视差图,提出了一种新的深度学习架构(MSDC-Net),用于从校正后的一对立体图像中检测视差图。我们的MSDC-Net包含两个模块:多尺度融合二维卷积模块和多尺度残差三维卷积模块。多尺度融合二维卷积模块利用潜在的多尺度特征,通过Dense-Net对不同尺度特征进行提取和融合。多尺度残差三维卷积模块从多尺度融合二维卷积模块聚合的代价体中学习不同尺度的几何环境。在场景流和KITTI数据集上的实验结果表明,我们的MSDC-Net在非遮挡区域的性能明显优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MSDC-Net: Multi-Scale Dense and Contextual Networks for Stereo Matching
Disparity prediction from stereo images is essential to computer vision applications such as autonomous driving, 3D model reconstruction, and object detection. To more accurately predict disparity map, a novel deep learning architecture (called MSDC-Net) for detecting the disparity map from a rectified pair of stereo images is proposed. Our MSDC-Net contains two modules: the multi-scale fusion 2D convolution module and the multi-scale residual 3D convolution module. The multi-scale fusion 2D convolution module exploits the potential multi-scale features, which extracts and fuses the different scale features by Dense-Net. The multi-scale residual 3D convolution module learns the different scale geometry context from the cost volume which aggregated by the multi-scale fusion 2D convolution module. Experimental results on Scene Flow and KITTI datasets demonstrate that our MSDC-Net significantly outperforms other approaches in the non-occluded region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信