更多关于递归结构:描述复杂性和0 - 1定律

T. Hirst, D. Harel
{"title":"更多关于递归结构:描述复杂性和0 - 1定律","authors":"T. Hirst, D. Harel","doi":"10.1109/LICS.1996.561361","DOIUrl":null,"url":null,"abstract":"This paper continues our work on infinite, recursive structures. We investigate the descriptive complexity of several logics over recursive structures, including first-order, second-order, and fixpoint logic, exhibiting connections between expressibility of a property and its computational complexity. We then address 0-1 laws, proposing a version that applies to recursive structures and using it to prove several non-expressibility results.","PeriodicalId":382663,"journal":{"name":"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"More about recursive structures: descriptive complexity and zero-one laws\",\"authors\":\"T. Hirst, D. Harel\",\"doi\":\"10.1109/LICS.1996.561361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper continues our work on infinite, recursive structures. We investigate the descriptive complexity of several logics over recursive structures, including first-order, second-order, and fixpoint logic, exhibiting connections between expressibility of a property and its computational complexity. We then address 0-1 laws, proposing a version that applies to recursive structures and using it to prove several non-expressibility results.\",\"PeriodicalId\":382663,\"journal\":{\"name\":\"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"201 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.1996.561361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1996.561361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文继续研究无限递归结构。我们研究了递归结构上几种逻辑的描述复杂性,包括一阶,二阶和不动点逻辑,展示了属性的可表达性与其计算复杂性之间的联系。然后我们讨论了0-1定律,提出了一个适用于递归结构的版本,并用它来证明几个不可表达性的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
More about recursive structures: descriptive complexity and zero-one laws
This paper continues our work on infinite, recursive structures. We investigate the descriptive complexity of several logics over recursive structures, including first-order, second-order, and fixpoint logic, exhibiting connections between expressibility of a property and its computational complexity. We then address 0-1 laws, proposing a version that applies to recursive structures and using it to prove several non-expressibility results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信