基于飞蛾火焰算法的改进去中心化SO-CFAR和GO-CFAR检测器

Taha Hocine Kerbaa, A. Mezache, H. Oudira
{"title":"基于飞蛾火焰算法的改进去中心化SO-CFAR和GO-CFAR检测器","authors":"Taha Hocine Kerbaa, A. Mezache, H. Oudira","doi":"10.1109/ICATEEE57445.2022.10093725","DOIUrl":null,"url":null,"abstract":"Optimization of distributed constant false alarm rate (CFAR) system parameters is an essential part in radar detection applications. In this work, the moth flame algorithm (MFO) is proposed as an optimization tool to compute scale factors of distributed Greatest of-CFAR (GO- CFAR) and Smallest of-CFAR (SO-CFAR) detectors in presence of Gaussian disturbance. Local binary decisions are obtained firstly from different sensors, at the fusion center, a fusing rule is applied to obtain a global decision. Detection performances comparisons are conducted against previous works using Gray Wolf Optimization (GWO) and Biography Based Optimization (BBO) methods. Simulation results show that the proposed optimizer demonstrates a slight superiority in some cases for ensuring fixed probability of false alarm and higher detection probabilities.","PeriodicalId":150519,"journal":{"name":"2022 International Conference of Advanced Technology in Electronic and Electrical Engineering (ICATEEE)","volume":"406 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Decentralized SO-CFAR and GO-CFAR Detectors via Moth Flame Algorithm\",\"authors\":\"Taha Hocine Kerbaa, A. Mezache, H. Oudira\",\"doi\":\"10.1109/ICATEEE57445.2022.10093725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimization of distributed constant false alarm rate (CFAR) system parameters is an essential part in radar detection applications. In this work, the moth flame algorithm (MFO) is proposed as an optimization tool to compute scale factors of distributed Greatest of-CFAR (GO- CFAR) and Smallest of-CFAR (SO-CFAR) detectors in presence of Gaussian disturbance. Local binary decisions are obtained firstly from different sensors, at the fusion center, a fusing rule is applied to obtain a global decision. Detection performances comparisons are conducted against previous works using Gray Wolf Optimization (GWO) and Biography Based Optimization (BBO) methods. Simulation results show that the proposed optimizer demonstrates a slight superiority in some cases for ensuring fixed probability of false alarm and higher detection probabilities.\",\"PeriodicalId\":150519,\"journal\":{\"name\":\"2022 International Conference of Advanced Technology in Electronic and Electrical Engineering (ICATEEE)\",\"volume\":\"406 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference of Advanced Technology in Electronic and Electrical Engineering (ICATEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICATEEE57445.2022.10093725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference of Advanced Technology in Electronic and Electrical Engineering (ICATEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICATEEE57445.2022.10093725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分布式恒虚警率(CFAR)系统参数的优化是雷达探测应用中的一个重要环节。本文提出了飞蛾火焰算法(MFO)作为一种优化工具,用于计算存在高斯干扰的分布式最大CFAR (GO- CFAR)和最小CFAR (SO-CFAR)探测器的尺度因子。首先从不同的传感器得到局部二值决策,在融合中心应用融合规则得到全局决策。利用灰狼优化(GWO)和基于传记的优化(BBO)方法,将检测性能与之前的工作进行了比较。仿真结果表明,该优化器在保证虚警概率固定和检测概率较高的某些情况下具有一定的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Decentralized SO-CFAR and GO-CFAR Detectors via Moth Flame Algorithm
Optimization of distributed constant false alarm rate (CFAR) system parameters is an essential part in radar detection applications. In this work, the moth flame algorithm (MFO) is proposed as an optimization tool to compute scale factors of distributed Greatest of-CFAR (GO- CFAR) and Smallest of-CFAR (SO-CFAR) detectors in presence of Gaussian disturbance. Local binary decisions are obtained firstly from different sensors, at the fusion center, a fusing rule is applied to obtain a global decision. Detection performances comparisons are conducted against previous works using Gray Wolf Optimization (GWO) and Biography Based Optimization (BBO) methods. Simulation results show that the proposed optimizer demonstrates a slight superiority in some cases for ensuring fixed probability of false alarm and higher detection probabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信