{"title":"投资组合选择的启发式方法","authors":"M. Gilli, Enrico Schumann","doi":"10.2139/ssrn.2551745","DOIUrl":null,"url":null,"abstract":"Portfolio selection is about combining assets such that investors’ financial goals and needs are best satisfied. When operators and academics translate this actual problem into optimisation models, they face two restrictions: the models need to be empirically meaningful, and the models need to be soluble. This chapter will focus on the second restriction. Many optimisation models are difficult to solve because they have multiple local optima or are ‘badly-behaved’ in other ways. But on modern computers such models can still be handled, through so-called heuristics. To motivate the use of heuristic techniques in finance, we present examples from portfolio selection in which standard optimisation methods fail. We then outline the principles by which heuristics work. To make that discussion more concrete, we describe a simple but effective optimisation technique called Threshold Accepting and how it can be used for constructing portfolios. We also summarise the results of an empirical study on hedge-fund replication.","PeriodicalId":373500,"journal":{"name":"EduRN: Financial Economics Education (FEN) (Topic)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Heuristics for Portfolio Selection\",\"authors\":\"M. Gilli, Enrico Schumann\",\"doi\":\"10.2139/ssrn.2551745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Portfolio selection is about combining assets such that investors’ financial goals and needs are best satisfied. When operators and academics translate this actual problem into optimisation models, they face two restrictions: the models need to be empirically meaningful, and the models need to be soluble. This chapter will focus on the second restriction. Many optimisation models are difficult to solve because they have multiple local optima or are ‘badly-behaved’ in other ways. But on modern computers such models can still be handled, through so-called heuristics. To motivate the use of heuristic techniques in finance, we present examples from portfolio selection in which standard optimisation methods fail. We then outline the principles by which heuristics work. To make that discussion more concrete, we describe a simple but effective optimisation technique called Threshold Accepting and how it can be used for constructing portfolios. We also summarise the results of an empirical study on hedge-fund replication.\",\"PeriodicalId\":373500,\"journal\":{\"name\":\"EduRN: Financial Economics Education (FEN) (Topic)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EduRN: Financial Economics Education (FEN) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2551745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EduRN: Financial Economics Education (FEN) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2551745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Portfolio selection is about combining assets such that investors’ financial goals and needs are best satisfied. When operators and academics translate this actual problem into optimisation models, they face two restrictions: the models need to be empirically meaningful, and the models need to be soluble. This chapter will focus on the second restriction. Many optimisation models are difficult to solve because they have multiple local optima or are ‘badly-behaved’ in other ways. But on modern computers such models can still be handled, through so-called heuristics. To motivate the use of heuristic techniques in finance, we present examples from portfolio selection in which standard optimisation methods fail. We then outline the principles by which heuristics work. To make that discussion more concrete, we describe a simple but effective optimisation technique called Threshold Accepting and how it can be used for constructing portfolios. We also summarise the results of an empirical study on hedge-fund replication.