V. Chandrasekaran, S. Sanghavi, P. Parrilo, A. Willsky
{"title":"稀疏和低秩矩阵分解","authors":"V. Chandrasekaran, S. Sanghavi, P. Parrilo, A. Willsky","doi":"10.3182/20090706-3-FR-2004.00249","DOIUrl":null,"url":null,"abstract":"We consider the following fundamental problem: given a matrix that is the sum of an unknown sparse matrix and an unknown low-rank matrix, is it possible to exactly recover the two components? Such a capability enables a considerable number of applications, but the goal is both ill-posed and NP-hard in general. In this paper we develop (a) a new uncertainty principle for matrices, and (b) a simple method for exact decomposition based on convex optimization. Our uncertainty principle is a quantification of the notion that a matrix cannot be sparse while having diffuse row/column spaces. It characterizes when the decomposition problem is ill-posed, and forms the basis for our decomposition method and its analysis. We provide deterministic conditions — on the sparse and low-rank components — under which our method guarantees exact recovery.","PeriodicalId":440015,"journal":{"name":"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"157","resultStr":"{\"title\":\"Sparse and low-rank matrix decompositions\",\"authors\":\"V. Chandrasekaran, S. Sanghavi, P. Parrilo, A. Willsky\",\"doi\":\"10.3182/20090706-3-FR-2004.00249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the following fundamental problem: given a matrix that is the sum of an unknown sparse matrix and an unknown low-rank matrix, is it possible to exactly recover the two components? Such a capability enables a considerable number of applications, but the goal is both ill-posed and NP-hard in general. In this paper we develop (a) a new uncertainty principle for matrices, and (b) a simple method for exact decomposition based on convex optimization. Our uncertainty principle is a quantification of the notion that a matrix cannot be sparse while having diffuse row/column spaces. It characterizes when the decomposition problem is ill-posed, and forms the basis for our decomposition method and its analysis. We provide deterministic conditions — on the sparse and low-rank components — under which our method guarantees exact recovery.\",\"PeriodicalId\":440015,\"journal\":{\"name\":\"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"157\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3182/20090706-3-FR-2004.00249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3182/20090706-3-FR-2004.00249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider the following fundamental problem: given a matrix that is the sum of an unknown sparse matrix and an unknown low-rank matrix, is it possible to exactly recover the two components? Such a capability enables a considerable number of applications, but the goal is both ill-posed and NP-hard in general. In this paper we develop (a) a new uncertainty principle for matrices, and (b) a simple method for exact decomposition based on convex optimization. Our uncertainty principle is a quantification of the notion that a matrix cannot be sparse while having diffuse row/column spaces. It characterizes when the decomposition problem is ill-posed, and forms the basis for our decomposition method and its analysis. We provide deterministic conditions — on the sparse and low-rank components — under which our method guarantees exact recovery.