稀疏和低秩矩阵分解

V. Chandrasekaran, S. Sanghavi, P. Parrilo, A. Willsky
{"title":"稀疏和低秩矩阵分解","authors":"V. Chandrasekaran, S. Sanghavi, P. Parrilo, A. Willsky","doi":"10.3182/20090706-3-FR-2004.00249","DOIUrl":null,"url":null,"abstract":"We consider the following fundamental problem: given a matrix that is the sum of an unknown sparse matrix and an unknown low-rank matrix, is it possible to exactly recover the two components? Such a capability enables a considerable number of applications, but the goal is both ill-posed and NP-hard in general. In this paper we develop (a) a new uncertainty principle for matrices, and (b) a simple method for exact decomposition based on convex optimization. Our uncertainty principle is a quantification of the notion that a matrix cannot be sparse while having diffuse row/column spaces. It characterizes when the decomposition problem is ill-posed, and forms the basis for our decomposition method and its analysis. We provide deterministic conditions — on the sparse and low-rank components — under which our method guarantees exact recovery.","PeriodicalId":440015,"journal":{"name":"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"157","resultStr":"{\"title\":\"Sparse and low-rank matrix decompositions\",\"authors\":\"V. Chandrasekaran, S. Sanghavi, P. Parrilo, A. Willsky\",\"doi\":\"10.3182/20090706-3-FR-2004.00249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the following fundamental problem: given a matrix that is the sum of an unknown sparse matrix and an unknown low-rank matrix, is it possible to exactly recover the two components? Such a capability enables a considerable number of applications, but the goal is both ill-posed and NP-hard in general. In this paper we develop (a) a new uncertainty principle for matrices, and (b) a simple method for exact decomposition based on convex optimization. Our uncertainty principle is a quantification of the notion that a matrix cannot be sparse while having diffuse row/column spaces. It characterizes when the decomposition problem is ill-posed, and forms the basis for our decomposition method and its analysis. We provide deterministic conditions — on the sparse and low-rank components — under which our method guarantees exact recovery.\",\"PeriodicalId\":440015,\"journal\":{\"name\":\"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"157\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3182/20090706-3-FR-2004.00249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3182/20090706-3-FR-2004.00249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 157

摘要

我们考虑以下基本问题:给定一个矩阵,它是一个未知的稀疏矩阵和一个未知的低秩矩阵的和,是否有可能准确地恢复这两个分量?这样的功能支持相当多的应用程序,但其目标通常是不适定和np困难的。本文提出了(a)一个新的矩阵不确定性原理,(b)一个基于凸优化的精确分解的简单方法。我们的测不准原理是一个量化的概念,即一个矩阵在具有弥散的行/列空间时不能是稀疏的。它表征了分解问题何时是病态的,并构成了我们的分解方法及其分析的基础。我们提供了确定性条件-在稀疏和低秩组件上-在此条件下,我们的方法保证精确的恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse and low-rank matrix decompositions
We consider the following fundamental problem: given a matrix that is the sum of an unknown sparse matrix and an unknown low-rank matrix, is it possible to exactly recover the two components? Such a capability enables a considerable number of applications, but the goal is both ill-posed and NP-hard in general. In this paper we develop (a) a new uncertainty principle for matrices, and (b) a simple method for exact decomposition based on convex optimization. Our uncertainty principle is a quantification of the notion that a matrix cannot be sparse while having diffuse row/column spaces. It characterizes when the decomposition problem is ill-posed, and forms the basis for our decomposition method and its analysis. We provide deterministic conditions — on the sparse and low-rank components — under which our method guarantees exact recovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信