基于自适应神经网络的慢动态非线性系统预测控制

Mark Spiller, F. Bakhshande, D. Söffker
{"title":"基于自适应神经网络的慢动态非线性系统预测控制","authors":"Mark Spiller, F. Bakhshande, D. Söffker","doi":"10.1115/DETC2020-22358","DOIUrl":null,"url":null,"abstract":"\n In this paper a data-driven approach for model-free control of nonlinear systems with slow dynamics is proposed. The system behavior is described using a local model respectively a neural network. The network is updated online based on a Kalman filter. By predicting the system behavior two control approaches are discussed. One is obtained by calculating a control input from the one step ahead prediction equation using least squares, the other is obtained by solving a standard linear model predictive control problem. The approaches are tested on a constrained nonlinear MIMO system with slow dynamics.","PeriodicalId":236538,"journal":{"name":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Neural Network Based Predictive Control of Nonlinear Systems With Slow Dynamics\",\"authors\":\"Mark Spiller, F. Bakhshande, D. Söffker\",\"doi\":\"10.1115/DETC2020-22358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper a data-driven approach for model-free control of nonlinear systems with slow dynamics is proposed. The system behavior is described using a local model respectively a neural network. The network is updated online based on a Kalman filter. By predicting the system behavior two control approaches are discussed. One is obtained by calculating a control input from the one step ahead prediction equation using least squares, the other is obtained by solving a standard linear model predictive control problem. The approaches are tested on a constrained nonlinear MIMO system with slow dynamics.\",\"PeriodicalId\":236538,\"journal\":{\"name\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/DETC2020-22358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2020-22358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种数据驱动的慢动力学非线性系统无模型控制方法。用局部模型和神经网络分别描述了系统的行为。基于卡尔曼滤波对网络进行在线更新。通过对系统行为的预测,讨论了两种控制方法。一种方法是利用最小二乘法从前一步预测方程中计算控制输入,另一种方法是通过求解标准线性模型预测控制问题得到的。在一个慢动态约束非线性MIMO系统上进行了实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Neural Network Based Predictive Control of Nonlinear Systems With Slow Dynamics
In this paper a data-driven approach for model-free control of nonlinear systems with slow dynamics is proposed. The system behavior is described using a local model respectively a neural network. The network is updated online based on a Kalman filter. By predicting the system behavior two control approaches are discussed. One is obtained by calculating a control input from the one step ahead prediction equation using least squares, the other is obtained by solving a standard linear model predictive control problem. The approaches are tested on a constrained nonlinear MIMO system with slow dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信