卷积块注意模块Unet在语义分割任务中的应用研究

Xiaotong Fang
{"title":"卷积块注意模块Unet在语义分割任务中的应用研究","authors":"Xiaotong Fang","doi":"10.1145/3577148.3577151","DOIUrl":null,"url":null,"abstract":"Attention mechanism can focus on important features and suppress unnecessary features, to increase the representational power of the network, which plays an important role in visual tasks such as semantic segmentation. To this end, the UNET of Convolutional Block Attention Module (CBAM) is applied in semantic segmentation tasks to improve the performance of convolutional neural networks. The channel attention adopts maximum pooling and average pooling, and for the spatial attention, a smaller convolution kernel is proposed to reduce computation and loss of important features. Through experiments, the introduction of CBAM has a improvement in semantic segmentation tasks increasing the Validation Dice from 0.98 to 0.9871 in the Kaggle Carvana image segmentation dataset.","PeriodicalId":107500,"journal":{"name":"Proceedings of the 2022 5th International Conference on Sensors, Signal and Image Processing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on the Application of Unet with Convolutional Block Attention Module to Semantic Segmentation Task\",\"authors\":\"Xiaotong Fang\",\"doi\":\"10.1145/3577148.3577151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attention mechanism can focus on important features and suppress unnecessary features, to increase the representational power of the network, which plays an important role in visual tasks such as semantic segmentation. To this end, the UNET of Convolutional Block Attention Module (CBAM) is applied in semantic segmentation tasks to improve the performance of convolutional neural networks. The channel attention adopts maximum pooling and average pooling, and for the spatial attention, a smaller convolution kernel is proposed to reduce computation and loss of important features. Through experiments, the introduction of CBAM has a improvement in semantic segmentation tasks increasing the Validation Dice from 0.98 to 0.9871 in the Kaggle Carvana image segmentation dataset.\",\"PeriodicalId\":107500,\"journal\":{\"name\":\"Proceedings of the 2022 5th International Conference on Sensors, Signal and Image Processing\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 5th International Conference on Sensors, Signal and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3577148.3577151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Sensors, Signal and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577148.3577151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

注意机制可以突出重要的特征,抑制不必要的特征,增加网络的表征能力,在语义分割等视觉任务中发挥重要作用。为此,将卷积块注意模块(CBAM)的UNET应用于语义分割任务中,以提高卷积神经网络的性能。通道注意采用最大池化和平均池化,空间注意采用较小的卷积核来减少计算量和重要特征的损失。通过实验,CBAM的引入使Kaggle Carvana图像分割数据集的Validation Dice从0.98提高到0.9871,语义分割任务得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on the Application of Unet with Convolutional Block Attention Module to Semantic Segmentation Task
Attention mechanism can focus on important features and suppress unnecessary features, to increase the representational power of the network, which plays an important role in visual tasks such as semantic segmentation. To this end, the UNET of Convolutional Block Attention Module (CBAM) is applied in semantic segmentation tasks to improve the performance of convolutional neural networks. The channel attention adopts maximum pooling and average pooling, and for the spatial attention, a smaller convolution kernel is proposed to reduce computation and loss of important features. Through experiments, the introduction of CBAM has a improvement in semantic segmentation tasks increasing the Validation Dice from 0.98 to 0.9871 in the Kaggle Carvana image segmentation dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信