一种改进的加权局部线性嵌入算法

Qing Wu, Zongxian Qi, Zhicang Wang, Yu Zhang
{"title":"一种改进的加权局部线性嵌入算法","authors":"Qing Wu, Zongxian Qi, Zhicang Wang, Yu Zhang","doi":"10.1109/CIS2018.2018.00090","DOIUrl":null,"url":null,"abstract":"Local linear embedding has the characteristics of nonlinearity and simple implementation, but it cannot accurately handle the selection of neighborhoods under the conditions of noise, large curvature and sparse sampling. To solve this problem, an improved weighted local linear embedding method (WLE-LLE) is proposed. In WLE-LLE, the dimensionality reduction objective function is reconstructed by utilizing Laplacian Eigenmaps, which can effectively represent the manifold structure of nonlinear data. Theoretical analyses show the proposed method is better than LLE algorithm in preserving the original manifold structure of the data. And numerical experiments show its classification recognition rate is greatly improved, which is 2%-8% higher than LLE.","PeriodicalId":185099,"journal":{"name":"2018 14th International Conference on Computational Intelligence and Security (CIS)","volume":"389 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Improved Weighted Local Linear Embedding Algorithm\",\"authors\":\"Qing Wu, Zongxian Qi, Zhicang Wang, Yu Zhang\",\"doi\":\"10.1109/CIS2018.2018.00090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local linear embedding has the characteristics of nonlinearity and simple implementation, but it cannot accurately handle the selection of neighborhoods under the conditions of noise, large curvature and sparse sampling. To solve this problem, an improved weighted local linear embedding method (WLE-LLE) is proposed. In WLE-LLE, the dimensionality reduction objective function is reconstructed by utilizing Laplacian Eigenmaps, which can effectively represent the manifold structure of nonlinear data. Theoretical analyses show the proposed method is better than LLE algorithm in preserving the original manifold structure of the data. And numerical experiments show its classification recognition rate is greatly improved, which is 2%-8% higher than LLE.\",\"PeriodicalId\":185099,\"journal\":{\"name\":\"2018 14th International Conference on Computational Intelligence and Security (CIS)\",\"volume\":\"389 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th International Conference on Computational Intelligence and Security (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS2018.2018.00090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS2018.2018.00090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

局部线性嵌入具有非线性和实现简单的特点,但不能准确处理噪声、大曲率和稀疏采样条件下的邻域选择问题。为了解决这一问题,提出了一种改进的加权局部线性嵌入方法(WLE-LLE)。在WLE-LLE中,利用拉普拉斯特征映射重构降维目标函数,可以有效地表示非线性数据的流形结构。理论分析表明,该方法在保留原始数据流形结构方面优于LLE算法。数值实验表明,该算法的分类识别率比LLE算法提高了2% ~ 8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Weighted Local Linear Embedding Algorithm
Local linear embedding has the characteristics of nonlinearity and simple implementation, but it cannot accurately handle the selection of neighborhoods under the conditions of noise, large curvature and sparse sampling. To solve this problem, an improved weighted local linear embedding method (WLE-LLE) is proposed. In WLE-LLE, the dimensionality reduction objective function is reconstructed by utilizing Laplacian Eigenmaps, which can effectively represent the manifold structure of nonlinear data. Theoretical analyses show the proposed method is better than LLE algorithm in preserving the original manifold structure of the data. And numerical experiments show its classification recognition rate is greatly improved, which is 2%-8% higher than LLE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信