延续模型中的经典提取

Valentin Blot
{"title":"延续模型中的经典提取","authors":"Valentin Blot","doi":"10.4230/LIPIcs.FSCD.2016.13","DOIUrl":null,"url":null,"abstract":"We use the control features of continuation models to interpret proofs \nin first-order classical theories. This interpretation is suitable for \nextracting algorithms from proofs of Pi^0_2 formulas. It is \nfundamentally different from the usual direct interpretation, which is \nshown to be equivalent to Friedman's trick. The main difference is \nthat atomic formulas and natural numbers are interpreted as distinct \nobjects. Nevertheless, the control features inherent to the \ncontinuation models permit extraction using a special \"channel\" on \nwhich the extracted value is transmitted at toplevel without unfolding \nthe recursive calls. We prove that the technique fails in Scott \ndomains, but succeeds in the refined setting of Laird's bistable \nbicpos, as well as in game semantics.","PeriodicalId":284975,"journal":{"name":"International Conference on Formal Structures for Computation and Deduction","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical Extraction in Continuation Models\",\"authors\":\"Valentin Blot\",\"doi\":\"10.4230/LIPIcs.FSCD.2016.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use the control features of continuation models to interpret proofs \\nin first-order classical theories. This interpretation is suitable for \\nextracting algorithms from proofs of Pi^0_2 formulas. It is \\nfundamentally different from the usual direct interpretation, which is \\nshown to be equivalent to Friedman's trick. The main difference is \\nthat atomic formulas and natural numbers are interpreted as distinct \\nobjects. Nevertheless, the control features inherent to the \\ncontinuation models permit extraction using a special \\\"channel\\\" on \\nwhich the extracted value is transmitted at toplevel without unfolding \\nthe recursive calls. We prove that the technique fails in Scott \\ndomains, but succeeds in the refined setting of Laird's bistable \\nbicpos, as well as in game semantics.\",\"PeriodicalId\":284975,\"journal\":{\"name\":\"International Conference on Formal Structures for Computation and Deduction\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Formal Structures for Computation and Deduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.FSCD.2016.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Formal Structures for Computation and Deduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSCD.2016.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用延拓模型的控制特征来解释一阶经典理论中的证明。这种解释适用于从Pi^0_2公式的证明中提取算法。它与通常的直接解释有着根本的不同,后者被证明等同于弗里德曼的把戏。主要区别在于原子公式和自然数被解释为不同的对象。尽管如此,延续模型固有的控制特性允许使用特殊的“通道”进行提取,在该通道上提取的值在顶层传输,而无需展开递归调用。我们证明了该技术在Scott域是失败的,但在Laird双稳态双pos的精细设置以及博弈语义中是成功的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classical Extraction in Continuation Models
We use the control features of continuation models to interpret proofs in first-order classical theories. This interpretation is suitable for extracting algorithms from proofs of Pi^0_2 formulas. It is fundamentally different from the usual direct interpretation, which is shown to be equivalent to Friedman's trick. The main difference is that atomic formulas and natural numbers are interpreted as distinct objects. Nevertheless, the control features inherent to the continuation models permit extraction using a special "channel" on which the extracted value is transmitted at toplevel without unfolding the recursive calls. We prove that the technique fails in Scott domains, but succeeds in the refined setting of Laird's bistable bicpos, as well as in game semantics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信