一元根及线性系统稳定内正表示的直接计算方法

F. Cacace, A. Germani, C. Manes
{"title":"一元根及线性系统稳定内正表示的直接计算方法","authors":"F. Cacace, A. Germani, C. Manes","doi":"10.1109/CDC.2011.6161234","DOIUrl":null,"url":null,"abstract":"This paper presents a new technique for the construction of Internal Positive Representations (IPRs) of discrete time linear systems. The proposed method overcomes the limitations of a previously proposed technique, which provides stable IPRs of systems under a restrictive assumption on the position of the eigenvalues in the complex plane. The new method here presented exploits a suitable representation of complex vectors and matrices by means of nonnegative combinations of the roots of unity, and provides a stable IPR for any stable system. The position of the eigenvalues in the complex plane only affects the state-space dimension of the IPR.","PeriodicalId":360068,"journal":{"name":"IEEE Conference on Decision and Control and European Control Conference","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The roots of unity and a direct method for the computation of stable Internal Positive Representations of linear systems\",\"authors\":\"F. Cacace, A. Germani, C. Manes\",\"doi\":\"10.1109/CDC.2011.6161234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new technique for the construction of Internal Positive Representations (IPRs) of discrete time linear systems. The proposed method overcomes the limitations of a previously proposed technique, which provides stable IPRs of systems under a restrictive assumption on the position of the eigenvalues in the complex plane. The new method here presented exploits a suitable representation of complex vectors and matrices by means of nonnegative combinations of the roots of unity, and provides a stable IPR for any stable system. The position of the eigenvalues in the complex plane only affects the state-space dimension of the IPR.\",\"PeriodicalId\":360068,\"journal\":{\"name\":\"IEEE Conference on Decision and Control and European Control Conference\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference on Decision and Control and European Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2011.6161234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Decision and Control and European Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2011.6161234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种构造离散时间线性系统内正表示的新方法。该方法克服了先前提出的技术的局限性,该技术在复平面上特征值位置的限制性假设下提供系统的稳定知识产权。本文提出的新方法利用单位根的非负组合来表示复数向量和矩阵,并为任何稳定系统提供了一个稳定的IPR。特征值在复平面上的位置只影响IPR的状态空间维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The roots of unity and a direct method for the computation of stable Internal Positive Representations of linear systems
This paper presents a new technique for the construction of Internal Positive Representations (IPRs) of discrete time linear systems. The proposed method overcomes the limitations of a previously proposed technique, which provides stable IPRs of systems under a restrictive assumption on the position of the eigenvalues in the complex plane. The new method here presented exploits a suitable representation of complex vectors and matrices by means of nonnegative combinations of the roots of unity, and provides a stable IPR for any stable system. The position of the eigenvalues in the complex plane only affects the state-space dimension of the IPR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信