一种自适应模糊前导聚类的共振关联网络

Randy B. Cleary, P. Israel
{"title":"一种自适应模糊前导聚类的共振关联网络","authors":"Randy B. Cleary, P. Israel","doi":"10.1109/TAI.1994.346499","DOIUrl":null,"url":null,"abstract":"Cluster analysis is a significant area of research in pattern recognition. Determining the optimal number of clusters in any real data set remains a difficult problem. The paper develops a new neural network model with the combined advantages of self-organization and no sequential search (as in the resonance correlation network) with more stable, fewer and better clusters (as in the adaptive fuzzy leader clustering network). This new model is the Adaptive Fuzzy Leader Clustering Resonance Correlation Network (AFLCRCN). It adaptively clusters continuous-valued data into classes without a priori knowledge of the entire data set or ifs number of clusters. AFLCRCN incorporates the fuzzy K-means learning rule used in the AFLC network into the RCN control structure. It has a modular design that allows metric replacement for improved performance in a specific problem. Applications for the model include classification, feature extraction, and pattern recognition.<<ETX>>","PeriodicalId":262014,"journal":{"name":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A resonance correlation network with adaptive fuzzy leader clustering\",\"authors\":\"Randy B. Cleary, P. Israel\",\"doi\":\"10.1109/TAI.1994.346499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cluster analysis is a significant area of research in pattern recognition. Determining the optimal number of clusters in any real data set remains a difficult problem. The paper develops a new neural network model with the combined advantages of self-organization and no sequential search (as in the resonance correlation network) with more stable, fewer and better clusters (as in the adaptive fuzzy leader clustering network). This new model is the Adaptive Fuzzy Leader Clustering Resonance Correlation Network (AFLCRCN). It adaptively clusters continuous-valued data into classes without a priori knowledge of the entire data set or ifs number of clusters. AFLCRCN incorporates the fuzzy K-means learning rule used in the AFLC network into the RCN control structure. It has a modular design that allows metric replacement for improved performance in a specific problem. Applications for the model include classification, feature extraction, and pattern recognition.<<ETX>>\",\"PeriodicalId\":262014,\"journal\":{\"name\":\"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94\",\"volume\":\"173 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1994.346499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1994.346499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚类分析是模式识别中的一个重要研究领域。在任何真实数据集中确定最优簇数仍然是一个难题。本文提出了一种新的神经网络模型,它结合了自组织和无顺序搜索的优点(如共振相关网络),具有更稳定、更少和更好的聚类(如自适应模糊前导聚类网络)。该模型就是自适应模糊前导聚类共振相关网络(AFLCRCN)。它自适应地将连续值数据聚类,而不需要先验地了解整个数据集或聚类的数量。AFLCRCN将AFLC网络中使用的模糊K-means学习规则融入到RCN控制结构中。它具有模块化设计,允许在特定问题中使用度量替换来提高性能。该模型的应用包括分类、特征提取和模式识别
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A resonance correlation network with adaptive fuzzy leader clustering
Cluster analysis is a significant area of research in pattern recognition. Determining the optimal number of clusters in any real data set remains a difficult problem. The paper develops a new neural network model with the combined advantages of self-organization and no sequential search (as in the resonance correlation network) with more stable, fewer and better clusters (as in the adaptive fuzzy leader clustering network). This new model is the Adaptive Fuzzy Leader Clustering Resonance Correlation Network (AFLCRCN). It adaptively clusters continuous-valued data into classes without a priori knowledge of the entire data set or ifs number of clusters. AFLCRCN incorporates the fuzzy K-means learning rule used in the AFLC network into the RCN control structure. It has a modular design that allows metric replacement for improved performance in a specific problem. Applications for the model include classification, feature extraction, and pattern recognition.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信