最小最大长度三角剖分的二次时间算法

H. Edelsbrunner, T. Tan
{"title":"最小最大长度三角剖分的二次时间算法","authors":"H. Edelsbrunner, T. Tan","doi":"10.1109/SFCS.1991.185400","DOIUrl":null,"url":null,"abstract":"It is shown that a triangulation of a set of n points in the plane that minimizes the maximum edge length can be computed in time O(n/sup 2/). The algorithm is reasonably easy to implement and is based on the theorem that there is a triangulation with minmax edge length that contains the relative neighborhood graph of the points as a subgraph. With minor modifications the algorithm works for arbitrary normed metrics.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"400 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"A quadratic time algorithm for the minmax length triangulation\",\"authors\":\"H. Edelsbrunner, T. Tan\",\"doi\":\"10.1109/SFCS.1991.185400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that a triangulation of a set of n points in the plane that minimizes the maximum edge length can be computed in time O(n/sup 2/). The algorithm is reasonably easy to implement and is based on the theorem that there is a triangulation with minmax edge length that contains the relative neighborhood graph of the points as a subgraph. With minor modifications the algorithm works for arbitrary normed metrics.<<ETX>>\",\"PeriodicalId\":320781,\"journal\":{\"name\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"volume\":\"400 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1991.185400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

摘要

结果表明,在O(n/sup 2/)时间内,可以计算出平面上n个点的三角剖分,使最大边长最小。该算法相当容易实现,并且基于这样一个定理,即存在一个边长最小的三角剖分,该三角剖分包含点的相对邻域图作为子图。稍加修改,该算法适用于任意赋范度量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A quadratic time algorithm for the minmax length triangulation
It is shown that a triangulation of a set of n points in the plane that minimizes the maximum edge length can be computed in time O(n/sup 2/). The algorithm is reasonably easy to implement and is based on the theorem that there is a triangulation with minmax edge length that contains the relative neighborhood graph of the points as a subgraph. With minor modifications the algorithm works for arbitrary normed metrics.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信