卷积码不等错误保护的进一步研究

Chung-hsuan Wang, Chi-chao Chao
{"title":"卷积码不等错误保护的进一步研究","authors":"Chung-hsuan Wang, Chi-chao Chao","doi":"10.1109/ISIT.2000.866325","DOIUrl":null,"url":null,"abstract":"In this paper, we concentrate on the study of combining the optimality with respect to unequal error protection and canonicity of generator matrices for convolutional codes. The transformation which can keep the optimality of generator matrices is constructed, based on which a procedure for obtaining a basic and optimal generator matrix with the smallest external degree is also proposed. Moreover, necessary and sufficient conditions for a canonical generator matrix whose separation vector is the greatest among all canonical generator matrices are given. Finally, the existence of the greatest separation vector among all canonical generator matrices is proved for some convolutional codes.","PeriodicalId":108752,"journal":{"name":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Further results on unequal error protection of convolutional codes\",\"authors\":\"Chung-hsuan Wang, Chi-chao Chao\",\"doi\":\"10.1109/ISIT.2000.866325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we concentrate on the study of combining the optimality with respect to unequal error protection and canonicity of generator matrices for convolutional codes. The transformation which can keep the optimality of generator matrices is constructed, based on which a procedure for obtaining a basic and optimal generator matrix with the smallest external degree is also proposed. Moreover, necessary and sufficient conditions for a canonical generator matrix whose separation vector is the greatest among all canonical generator matrices are given. Finally, the existence of the greatest separation vector among all canonical generator matrices is proved for some convolutional codes.\",\"PeriodicalId\":108752,\"journal\":{\"name\":\"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2000.866325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2000.866325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们集中研究了卷积码的生成器矩阵的不等错误保护的最优性和正则性的结合。构造了保持生成矩阵最优性的变换,并在此基础上给出了获得外次最小的基本最优生成矩阵的方法。并给出了分离向量在所有正则生成矩阵中最大的正则生成矩阵的充分必要条件。最后,对一些卷积码证明了所有正则生成矩阵中最大分离向量的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Further results on unequal error protection of convolutional codes
In this paper, we concentrate on the study of combining the optimality with respect to unequal error protection and canonicity of generator matrices for convolutional codes. The transformation which can keep the optimality of generator matrices is constructed, based on which a procedure for obtaining a basic and optimal generator matrix with the smallest external degree is also proposed. Moreover, necessary and sufficient conditions for a canonical generator matrix whose separation vector is the greatest among all canonical generator matrices are given. Finally, the existence of the greatest separation vector among all canonical generator matrices is proved for some convolutional codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信