基于自旋转移转矩MRAM存储器的零误码率弱PUF

E. Vatajelu, G. D. Natale, P. Prinetto
{"title":"基于自旋转移转矩MRAM存储器的零误码率弱PUF","authors":"E. Vatajelu, G. D. Natale, P. Prinetto","doi":"10.1109/IVSW.2017.8031552","DOIUrl":null,"url":null,"abstract":"Physically Unclonable Functions (PUFs) are emerging cryptographic primitives used to implement low-cost device authentication and secure secret key generation. While several solutions exist for classical CMOS devices, novel proposals have been recently presented which exploit emerging technologies like magnetic memories. The Spin-Transfer-Torque Magnetic Random Access Memory (STT-MRAM) is a promising choice for future PUFs due to the high variability affecting the electrical resistance of the Magnetic Tunnel Junction (MTJ) device in anti-parallel magnetization. Some papers showed that these devices could guarantee high levels of both unclonability and reliability. However, 100% reliability is not yet obtained in those proposals. In this paper we present an effective method to identify the unreliable cells in a PUF implementation. This information is then used to create a zero bit-error-rate PUF scheme.","PeriodicalId":184196,"journal":{"name":"2017 IEEE 2nd International Verification and Security Workshop (IVSW)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Zero bit-error-rate weak PUF based on Spin-Transfer-Torque MRAM memories\",\"authors\":\"E. Vatajelu, G. D. Natale, P. Prinetto\",\"doi\":\"10.1109/IVSW.2017.8031552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physically Unclonable Functions (PUFs) are emerging cryptographic primitives used to implement low-cost device authentication and secure secret key generation. While several solutions exist for classical CMOS devices, novel proposals have been recently presented which exploit emerging technologies like magnetic memories. The Spin-Transfer-Torque Magnetic Random Access Memory (STT-MRAM) is a promising choice for future PUFs due to the high variability affecting the electrical resistance of the Magnetic Tunnel Junction (MTJ) device in anti-parallel magnetization. Some papers showed that these devices could guarantee high levels of both unclonability and reliability. However, 100% reliability is not yet obtained in those proposals. In this paper we present an effective method to identify the unreliable cells in a PUF implementation. This information is then used to create a zero bit-error-rate PUF scheme.\",\"PeriodicalId\":184196,\"journal\":{\"name\":\"2017 IEEE 2nd International Verification and Security Workshop (IVSW)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 2nd International Verification and Security Workshop (IVSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVSW.2017.8031552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 2nd International Verification and Security Workshop (IVSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVSW.2017.8031552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

物理不可克隆函数(puf)是新兴的加密原语,用于实现低成本的设备身份验证和安全的密钥生成。虽然经典CMOS器件存在几种解决方案,但最近提出了利用磁存储器等新兴技术的新方案。自旋-传递-转矩磁随机存取存储器(STT-MRAM)是未来puf的一个很有前途的选择,因为在反平行磁化中,磁隧道结(MTJ)器件的电阻具有很高的可变性。一些论文表明,这些设备可以保证高水平的不可克隆性和可靠性。然而,这些方案还没有达到100%的可靠性。本文提出了一种识别PUF实现中不可靠单元的有效方法。然后使用该信息创建零误码率PUF方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero bit-error-rate weak PUF based on Spin-Transfer-Torque MRAM memories
Physically Unclonable Functions (PUFs) are emerging cryptographic primitives used to implement low-cost device authentication and secure secret key generation. While several solutions exist for classical CMOS devices, novel proposals have been recently presented which exploit emerging technologies like magnetic memories. The Spin-Transfer-Torque Magnetic Random Access Memory (STT-MRAM) is a promising choice for future PUFs due to the high variability affecting the electrical resistance of the Magnetic Tunnel Junction (MTJ) device in anti-parallel magnetization. Some papers showed that these devices could guarantee high levels of both unclonability and reliability. However, 100% reliability is not yet obtained in those proposals. In this paper we present an effective method to identify the unreliable cells in a PUF implementation. This information is then used to create a zero bit-error-rate PUF scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信