高效的基于参考的视频超分辨率(ERVSR):单个参考图像就是您所需要的

Youngrae Kim, Jinsu Lim, Hoonhee Cho, Minji Lee, Dongman Lee, Kuk-Jin Yoon, Ho-Jin Choi
{"title":"高效的基于参考的视频超分辨率(ERVSR):单个参考图像就是您所需要的","authors":"Youngrae Kim, Jinsu Lim, Hoonhee Cho, Minji Lee, Dongman Lee, Kuk-Jin Yoon, Ho-Jin Choi","doi":"10.1109/WACV56688.2023.00187","DOIUrl":null,"url":null,"abstract":"Reference-based video super-resolution (RefVSR) is a promising domain of super-resolution that recovers high-frequency textures of a video using reference video. The multiple cameras with different focal lengths in mobile devices aid recent works in RefVSR, which aim to super-resolve a low-resolution ultra-wide video by utilizing wide-angle videos. Previous works in RefVSR used all reference frames of a Ref video at each time step for the super-resolution of low-resolution videos. However, computation on higher-resolution images increases the runtime and memory consumption, hence hinders the practical application of RefVSR. To solve this problem, we propose an Efficient Reference-based Video Super-Resolution (ERVSR) that exploits a single reference frame to super-resolve whole low-resolution video frames. We introduce an attention-based feature align module and an aggregation upsampling module that attends LR features using the correlation between the reference and LR frames. The proposed ERVSR achieves 12× faster speed, 1/4 memory consumption than previous state-of-the-art RefVSR networks, and competitive performance on the RealMCVSR dataset while using a single reference image.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Reference-based Video Super-Resolution (ERVSR): Single Reference Image Is All You Need\",\"authors\":\"Youngrae Kim, Jinsu Lim, Hoonhee Cho, Minji Lee, Dongman Lee, Kuk-Jin Yoon, Ho-Jin Choi\",\"doi\":\"10.1109/WACV56688.2023.00187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reference-based video super-resolution (RefVSR) is a promising domain of super-resolution that recovers high-frequency textures of a video using reference video. The multiple cameras with different focal lengths in mobile devices aid recent works in RefVSR, which aim to super-resolve a low-resolution ultra-wide video by utilizing wide-angle videos. Previous works in RefVSR used all reference frames of a Ref video at each time step for the super-resolution of low-resolution videos. However, computation on higher-resolution images increases the runtime and memory consumption, hence hinders the practical application of RefVSR. To solve this problem, we propose an Efficient Reference-based Video Super-Resolution (ERVSR) that exploits a single reference frame to super-resolve whole low-resolution video frames. We introduce an attention-based feature align module and an aggregation upsampling module that attends LR features using the correlation between the reference and LR frames. The proposed ERVSR achieves 12× faster speed, 1/4 memory consumption than previous state-of-the-art RefVSR networks, and competitive performance on the RealMCVSR dataset while using a single reference image.\",\"PeriodicalId\":270631,\"journal\":{\"name\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV56688.2023.00187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于参考的视频超分辨率(RefVSR)是一个很有前途的超分辨率领域,它利用参考视频来恢复视频的高频纹理。移动设备上不同焦距的多个摄像头有助于RefVSR最近的工作,该工作旨在通过利用广角视频来超分辨率低分辨率超宽视频。以前在RefVSR的工作中,对于低分辨率视频的超分辨率,在每个时间步使用Ref视频的所有参考帧。然而,在高分辨率图像上的计算增加了运行时和内存消耗,从而阻碍了RefVSR的实际应用。为了解决这个问题,我们提出了一种高效的基于参考的视频超分辨率(ERVSR),它利用单个参考帧来超分辨率整个低分辨率视频帧。我们引入了一个基于注意力的特征对齐模块和一个聚合上采样模块,该模块使用参考帧和LR帧之间的相关性来关注LR特征。提出的ERVSR实现了比以前最先进的RefVSR网络快12倍的速度,1/4的内存消耗,并且在使用单个参考图像时在RealMCVSR数据集上具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Reference-based Video Super-Resolution (ERVSR): Single Reference Image Is All You Need
Reference-based video super-resolution (RefVSR) is a promising domain of super-resolution that recovers high-frequency textures of a video using reference video. The multiple cameras with different focal lengths in mobile devices aid recent works in RefVSR, which aim to super-resolve a low-resolution ultra-wide video by utilizing wide-angle videos. Previous works in RefVSR used all reference frames of a Ref video at each time step for the super-resolution of low-resolution videos. However, computation on higher-resolution images increases the runtime and memory consumption, hence hinders the practical application of RefVSR. To solve this problem, we propose an Efficient Reference-based Video Super-Resolution (ERVSR) that exploits a single reference frame to super-resolve whole low-resolution video frames. We introduce an attention-based feature align module and an aggregation upsampling module that attends LR features using the correlation between the reference and LR frames. The proposed ERVSR achieves 12× faster speed, 1/4 memory consumption than previous state-of-the-art RefVSR networks, and competitive performance on the RealMCVSR dataset while using a single reference image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信