Marcos Vinícius Araújo Farias, I. F. S. D. Silva, A. C. Silva, Henrique Manoel de Araújo Martins Filho, Anselmo Cardoso de Paiva
{"title":"利用时间卷积网络热图像对非酒精性脂肪性肝病进行分类","authors":"Marcos Vinícius Araújo Farias, I. F. S. D. Silva, A. C. Silva, Henrique Manoel de Araújo Martins Filho, Anselmo Cardoso de Paiva","doi":"10.5753/sbcas.2023.229802","DOIUrl":null,"url":null,"abstract":"Dentre as patologias hepáticas existentes, a Doença Hepática Gordurosa Não Alcoólica (DHGNA) é aquela que afeta a maior parcela da população mundial, aproximadamente 2 bilhões de pessoas. A DHGNA possui chances consideráveis de evoluir para quadros clínicos mais graves, como fibrose e cirrose hepática, representando sérios riscos à vida dos pacientes. Desse modo, é vital que sua detecção seja feita de maneira ágil, precisa e preferencialmente não invasiva, sendo a utilização de imagens térmicas um método de grande respaldo nesse âmbito. O presente trabalho apresenta o desenvolvimento de um modelo de classificação de DHGNA a partir de séries temporais em termografias. Foram utilizadas Temporal Convolutional Networks aliadas a estratégias de processamento de imagens na composição da proposta.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classificação de Doença Hepática Gordurosa Não Alcoólica em Imagens Térmicas usando Temporal Convolutional Networks\",\"authors\":\"Marcos Vinícius Araújo Farias, I. F. S. D. Silva, A. C. Silva, Henrique Manoel de Araújo Martins Filho, Anselmo Cardoso de Paiva\",\"doi\":\"10.5753/sbcas.2023.229802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dentre as patologias hepáticas existentes, a Doença Hepática Gordurosa Não Alcoólica (DHGNA) é aquela que afeta a maior parcela da população mundial, aproximadamente 2 bilhões de pessoas. A DHGNA possui chances consideráveis de evoluir para quadros clínicos mais graves, como fibrose e cirrose hepática, representando sérios riscos à vida dos pacientes. Desse modo, é vital que sua detecção seja feita de maneira ágil, precisa e preferencialmente não invasiva, sendo a utilização de imagens térmicas um método de grande respaldo nesse âmbito. O presente trabalho apresenta o desenvolvimento de um modelo de classificação de DHGNA a partir de séries temporais em termografias. Foram utilizadas Temporal Convolutional Networks aliadas a estratégias de processamento de imagens na composição da proposta.\",\"PeriodicalId\":122965,\"journal\":{\"name\":\"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbcas.2023.229802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.229802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classificação de Doença Hepática Gordurosa Não Alcoólica em Imagens Térmicas usando Temporal Convolutional Networks
Dentre as patologias hepáticas existentes, a Doença Hepática Gordurosa Não Alcoólica (DHGNA) é aquela que afeta a maior parcela da população mundial, aproximadamente 2 bilhões de pessoas. A DHGNA possui chances consideráveis de evoluir para quadros clínicos mais graves, como fibrose e cirrose hepática, representando sérios riscos à vida dos pacientes. Desse modo, é vital que sua detecção seja feita de maneira ágil, precisa e preferencialmente não invasiva, sendo a utilização de imagens térmicas um método de grande respaldo nesse âmbito. O presente trabalho apresenta o desenvolvimento de um modelo de classificação de DHGNA a partir de séries temporais em termografias. Foram utilizadas Temporal Convolutional Networks aliadas a estratégias de processamento de imagens na composição da proposta.