{"title":"基于改进bp神经网络的致密砂岩储层渗透率预测","authors":"Peng Zhu, Chengyan Lin, Peng Wu, Ruifeng Fan, Huali Zhang, Wei Pu","doi":"10.2174/1874834101508010288","DOIUrl":null,"url":null,"abstract":"By analyzing the permeability controlling factors of tight sandstone reservoir in Wuhaozhuang Oil Field, the permeability is considered to be mainly controlled by porosity, clay content, irreducible water saturation and diagenetic coefficient. Because the conventional BP algorithm has its drawbacks such as slow convergence speed and easy falling into the local minimum value, an improved three-layer feed-forward BP neural network model is built by MATLAB neu- ral network toolbox to predict permeability according to the four permeability controlling factors, while studying samples of model are selected based on the representative core analysis data. The simulation based on improved neural network model shows that the improved model has a faster convergence speed and better accuracy. The consistency between model prediction value and lab test value is good and the mean squared error is less. Therefore, the new model can meet the needs of the development geology research of oil field better in the future.","PeriodicalId":377053,"journal":{"name":"The Open Petroleum Engineering Journal","volume":"365 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Permeability Prediction of Tight Sandstone Reservoirs Using Improved BPNeural Network\",\"authors\":\"Peng Zhu, Chengyan Lin, Peng Wu, Ruifeng Fan, Huali Zhang, Wei Pu\",\"doi\":\"10.2174/1874834101508010288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By analyzing the permeability controlling factors of tight sandstone reservoir in Wuhaozhuang Oil Field, the permeability is considered to be mainly controlled by porosity, clay content, irreducible water saturation and diagenetic coefficient. Because the conventional BP algorithm has its drawbacks such as slow convergence speed and easy falling into the local minimum value, an improved three-layer feed-forward BP neural network model is built by MATLAB neu- ral network toolbox to predict permeability according to the four permeability controlling factors, while studying samples of model are selected based on the representative core analysis data. The simulation based on improved neural network model shows that the improved model has a faster convergence speed and better accuracy. The consistency between model prediction value and lab test value is good and the mean squared error is less. Therefore, the new model can meet the needs of the development geology research of oil field better in the future.\",\"PeriodicalId\":377053,\"journal\":{\"name\":\"The Open Petroleum Engineering Journal\",\"volume\":\"365 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Open Petroleum Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874834101508010288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Petroleum Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874834101508010288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Permeability Prediction of Tight Sandstone Reservoirs Using Improved BPNeural Network
By analyzing the permeability controlling factors of tight sandstone reservoir in Wuhaozhuang Oil Field, the permeability is considered to be mainly controlled by porosity, clay content, irreducible water saturation and diagenetic coefficient. Because the conventional BP algorithm has its drawbacks such as slow convergence speed and easy falling into the local minimum value, an improved three-layer feed-forward BP neural network model is built by MATLAB neu- ral network toolbox to predict permeability according to the four permeability controlling factors, while studying samples of model are selected based on the representative core analysis data. The simulation based on improved neural network model shows that the improved model has a faster convergence speed and better accuracy. The consistency between model prediction value and lab test value is good and the mean squared error is less. Therefore, the new model can meet the needs of the development geology research of oil field better in the future.