Shuaiqiang Wang, Byron J. Gao, Ke Wang, Hady W. Lauw
{"title":"并行学习排序用于信息检索","authors":"Shuaiqiang Wang, Byron J. Gao, Ke Wang, Hady W. Lauw","doi":"10.1145/2009916.2010060","DOIUrl":null,"url":null,"abstract":"Learning to rank represents a category of effective ranking methods for information retrieval. While the primary concern of existing research has been accuracy, learning efficiency is becoming an important issue due to the unprecedented availability of large-scale training data and the need for continuous update of ranking functions. In this paper, we investigate parallel learning to rank, targeting simultaneous improvement in accuracy and efficiency.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Parallel learning to rank for information retrieval\",\"authors\":\"Shuaiqiang Wang, Byron J. Gao, Ke Wang, Hady W. Lauw\",\"doi\":\"10.1145/2009916.2010060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning to rank represents a category of effective ranking methods for information retrieval. While the primary concern of existing research has been accuracy, learning efficiency is becoming an important issue due to the unprecedented availability of large-scale training data and the need for continuous update of ranking functions. In this paper, we investigate parallel learning to rank, targeting simultaneous improvement in accuracy and efficiency.\",\"PeriodicalId\":356580,\"journal\":{\"name\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2009916.2010060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2010060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parallel learning to rank for information retrieval
Learning to rank represents a category of effective ranking methods for information retrieval. While the primary concern of existing research has been accuracy, learning efficiency is becoming an important issue due to the unprecedented availability of large-scale training data and the need for continuous update of ranking functions. In this paper, we investigate parallel learning to rank, targeting simultaneous improvement in accuracy and efficiency.