使用长度相关阈值改进的语音抑制

Sunil K. Gupta, F. Soong
{"title":"使用长度相关阈值改进的语音抑制","authors":"Sunil K. Gupta, F. Soong","doi":"10.21437/ICSLP.1998-425","DOIUrl":null,"url":null,"abstract":"In this paper, we propose to use an utterance length (duration) dependent threshold for rejecting an unknown input utterance with a general speech(garbage) model. A general speech model, com-paring with more sophisticated anti-subword models, is a more viable solution to the utterance rejection problem for low-cost ap-plications with stringent storage and computational constraints. However, the rejection performance using such a general model with a fixed, universal rejection threshold is in general worse than the anti-models with higher discriminations. Without adding complexities to the rejection algorithm, we propose to vary the rejection threshold according to the utterance length. The experimental results show that significant improvement in rejection performance can be obtained by using the proposed, length dependent rejection threshold over a fixed threshold. We investigate utterance rejection in a command phrase recognition task. The equal error rate, a good figure of merit for calibrating the performance of utterance verification algorithms, is reduced by almost 23% when the proposed length dependent threshold is used.","PeriodicalId":117113,"journal":{"name":"5th International Conference on Spoken Language Processing (ICSLP 1998)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Improved utterance rejection using length dependent thresholds\",\"authors\":\"Sunil K. Gupta, F. Soong\",\"doi\":\"10.21437/ICSLP.1998-425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose to use an utterance length (duration) dependent threshold for rejecting an unknown input utterance with a general speech(garbage) model. A general speech model, com-paring with more sophisticated anti-subword models, is a more viable solution to the utterance rejection problem for low-cost ap-plications with stringent storage and computational constraints. However, the rejection performance using such a general model with a fixed, universal rejection threshold is in general worse than the anti-models with higher discriminations. Without adding complexities to the rejection algorithm, we propose to vary the rejection threshold according to the utterance length. The experimental results show that significant improvement in rejection performance can be obtained by using the proposed, length dependent rejection threshold over a fixed threshold. We investigate utterance rejection in a command phrase recognition task. The equal error rate, a good figure of merit for calibrating the performance of utterance verification algorithms, is reduced by almost 23% when the proposed length dependent threshold is used.\",\"PeriodicalId\":117113,\"journal\":{\"name\":\"5th International Conference on Spoken Language Processing (ICSLP 1998)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Spoken Language Processing (ICSLP 1998)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/ICSLP.1998-425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Spoken Language Processing (ICSLP 1998)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ICSLP.1998-425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们建议使用一个依赖于话语长度(持续时间)的阈值来拒绝一个未知的输入话语,并使用一个通用的语音(垃圾)模型。对于具有严格存储和计算约束的低成本应用程序,通用语音模型比更复杂的反子词模型更能解决语音拒绝问题。然而,使用这种具有固定的通用拒绝阈值的通用模型的拒绝性能通常比具有较高判别的反模型差。在不增加拒绝算法复杂性的前提下,我们建议根据话语长度改变拒绝阈值。实验结果表明,在固定阈值的基础上,采用基于长度的拒止阈值可以显著提高拒止性能。我们研究命令短语识别任务中的话语拒绝。当使用所提出的长度相关阈值时,相等错误率减少了近23%,这是校准话语验证算法性能的一个很好的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved utterance rejection using length dependent thresholds
In this paper, we propose to use an utterance length (duration) dependent threshold for rejecting an unknown input utterance with a general speech(garbage) model. A general speech model, com-paring with more sophisticated anti-subword models, is a more viable solution to the utterance rejection problem for low-cost ap-plications with stringent storage and computational constraints. However, the rejection performance using such a general model with a fixed, universal rejection threshold is in general worse than the anti-models with higher discriminations. Without adding complexities to the rejection algorithm, we propose to vary the rejection threshold according to the utterance length. The experimental results show that significant improvement in rejection performance can be obtained by using the proposed, length dependent rejection threshold over a fixed threshold. We investigate utterance rejection in a command phrase recognition task. The equal error rate, a good figure of merit for calibrating the performance of utterance verification algorithms, is reduced by almost 23% when the proposed length dependent threshold is used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信