超快多普勒超声指骨关节微血管造影

D. Maresca, M. Tanter, M. Pernot
{"title":"超快多普勒超声指骨关节微血管造影","authors":"D. Maresca, M. Tanter, M. Pernot","doi":"10.1109/ULTSYM.2014.0105","DOIUrl":null,"url":null,"abstract":"Rheumatoid arthritis (RA) is a common autoimmune disease associated with chronic inflammation, referred to as synovitis, and ultimately joint destruction. It is acknowledged that ultrasound Power Doppler imaging can reveal subclinical synovitis but the quantification of inflammation stages is currently limited by the coarse resolution and sensitivity of conventional Doppler imaging. Here we show that ultrafast Doppler imaging characterizes metacarophalangeal joint microvasculature with an unprecedented accuracy, making it a promising microangiography method for the early diagnosis of RA. We made use of a 15 MHz probe (256 elements linear array, 0.125 mm pitch) connected to a programmable ultrafast ultrasound scanner. We insonified the second metacarpophalangeal joint of 13 healthy volunteers with a dedicated ultrafast Doppler imaging sequence consisting of 41 plane wave transmissions at a pulse repetition frequency of 20 kHz during one second. The received ultrasound data were beamformed and digitally filtered to get rid of tissue clutter. Power Doppler maps were computed and overlaid on co-registered Bmode images of the joint anatomy. Ultrafast Doppler imaging allowed for the detection of healthy metacarpophalangeal joint microvasculature, which is invisible in conventional Power Doppler imaging. We imaged microvascular blood flow in 12 out of 13 healthy joints, with Doppler signal to noise ratios of the order of 5 dB. In addition, we computed for each individual a functional capillary density (defined as the length of perfused capillaries in mm per tissue area in mm2) and obtained values of the order of 0.6 ± 0.1 mm microvessel/mm2 tissue. The method, which can be readily implemented on ultrafast ultrasound scanners, shows strong potential for the early diagnosis of RA and has the advantage of being fully noninvasive. A group of RA patients with different stages of inflammation will be investigated next.","PeriodicalId":153901,"journal":{"name":"2014 IEEE International Ultrasonics Symposium","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ultrasound microangiography of the metacarophalangeal joint using ultrafast Doppler\",\"authors\":\"D. Maresca, M. Tanter, M. Pernot\",\"doi\":\"10.1109/ULTSYM.2014.0105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rheumatoid arthritis (RA) is a common autoimmune disease associated with chronic inflammation, referred to as synovitis, and ultimately joint destruction. It is acknowledged that ultrasound Power Doppler imaging can reveal subclinical synovitis but the quantification of inflammation stages is currently limited by the coarse resolution and sensitivity of conventional Doppler imaging. Here we show that ultrafast Doppler imaging characterizes metacarophalangeal joint microvasculature with an unprecedented accuracy, making it a promising microangiography method for the early diagnosis of RA. We made use of a 15 MHz probe (256 elements linear array, 0.125 mm pitch) connected to a programmable ultrafast ultrasound scanner. We insonified the second metacarpophalangeal joint of 13 healthy volunteers with a dedicated ultrafast Doppler imaging sequence consisting of 41 plane wave transmissions at a pulse repetition frequency of 20 kHz during one second. The received ultrasound data were beamformed and digitally filtered to get rid of tissue clutter. Power Doppler maps were computed and overlaid on co-registered Bmode images of the joint anatomy. Ultrafast Doppler imaging allowed for the detection of healthy metacarpophalangeal joint microvasculature, which is invisible in conventional Power Doppler imaging. We imaged microvascular blood flow in 12 out of 13 healthy joints, with Doppler signal to noise ratios of the order of 5 dB. In addition, we computed for each individual a functional capillary density (defined as the length of perfused capillaries in mm per tissue area in mm2) and obtained values of the order of 0.6 ± 0.1 mm microvessel/mm2 tissue. The method, which can be readily implemented on ultrafast ultrasound scanners, shows strong potential for the early diagnosis of RA and has the advantage of being fully noninvasive. A group of RA patients with different stages of inflammation will be investigated next.\",\"PeriodicalId\":153901,\"journal\":{\"name\":\"2014 IEEE International Ultrasonics Symposium\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Ultrasonics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2014.0105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2014.0105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

类风湿性关节炎(RA)是一种常见的自身免疫性疾病,与慢性炎症相关,称为滑膜炎,最终导致关节破坏。超声功率多普勒成像可以显示亚临床滑膜炎,但目前由于常规多普勒成像的分辨率和灵敏度较低,炎症分期的量化受到限制。本研究表明,超快多普勒成像以前所未有的准确性表征掌指关节微血管,使其成为早期诊断RA的一种有前途的微血管成像方法。我们使用了一个15 MHz探针(256个元素线性阵列,0.125毫米间距)连接到一个可编程的超快超声扫描仪。我们用一种专用的超快多普勒成像序列对13名健康志愿者的第二掌指关节进行了超声检查,该序列由41个平面波传输组成,脉冲重复频率为20khz。接收到的超声数据经过波束形成和数字滤波以去除组织杂波。计算功率多普勒图并叠加在关节解剖的共配准b模图像上。超快多普勒成像允许检测健康的掌指关节微血管,这在常规的功率多普勒成像中是不可见的。我们对13个健康关节中的12个进行了微血管血流成像,多普勒信噪比约为5 dB。此外,我们计算了每个个体的功能性毛细血管密度(定义为每组织面积灌注毛细血管的长度,单位为mm,单位为mm2),得到的数值为0.6±0.1 mm微血管/mm2组织。该方法可以很容易地在超快超声扫描仪上实现,显示出RA早期诊断的强大潜力,并且具有完全无创的优势。接下来将对一组不同炎症阶段的RA患者进行调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrasound microangiography of the metacarophalangeal joint using ultrafast Doppler
Rheumatoid arthritis (RA) is a common autoimmune disease associated with chronic inflammation, referred to as synovitis, and ultimately joint destruction. It is acknowledged that ultrasound Power Doppler imaging can reveal subclinical synovitis but the quantification of inflammation stages is currently limited by the coarse resolution and sensitivity of conventional Doppler imaging. Here we show that ultrafast Doppler imaging characterizes metacarophalangeal joint microvasculature with an unprecedented accuracy, making it a promising microangiography method for the early diagnosis of RA. We made use of a 15 MHz probe (256 elements linear array, 0.125 mm pitch) connected to a programmable ultrafast ultrasound scanner. We insonified the second metacarpophalangeal joint of 13 healthy volunteers with a dedicated ultrafast Doppler imaging sequence consisting of 41 plane wave transmissions at a pulse repetition frequency of 20 kHz during one second. The received ultrasound data were beamformed and digitally filtered to get rid of tissue clutter. Power Doppler maps were computed and overlaid on co-registered Bmode images of the joint anatomy. Ultrafast Doppler imaging allowed for the detection of healthy metacarpophalangeal joint microvasculature, which is invisible in conventional Power Doppler imaging. We imaged microvascular blood flow in 12 out of 13 healthy joints, with Doppler signal to noise ratios of the order of 5 dB. In addition, we computed for each individual a functional capillary density (defined as the length of perfused capillaries in mm per tissue area in mm2) and obtained values of the order of 0.6 ± 0.1 mm microvessel/mm2 tissue. The method, which can be readily implemented on ultrafast ultrasound scanners, shows strong potential for the early diagnosis of RA and has the advantage of being fully noninvasive. A group of RA patients with different stages of inflammation will be investigated next.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信